A367400 Number of subsets of {1..n} whose cardinality is not the sum of two distinct elements.
1, 2, 4, 7, 13, 25, 47, 88, 166, 313, 589, 1109, 2089, 3934, 7408, 13951, 26273, 49477, 93175, 175468, 330442, 622289, 1171897, 2206921, 4156081, 7826746, 14739356, 27757207, 52272469, 98439697, 185381983, 349112000, 657448942, 1238110153
Offset: 0
Examples
The set s = {1,2,3,6,7,8} has the following sums of pairs of distinct elements: {3,4,5,7,8,9,10,11,13,14,15}. This does not include 6, so s is counted under a(8). The a(0) = 1 through a(4) = 13 subsets: {} {} {} {} {} {1} {1} {1} {1} {2} {2} {2} {1,2} {3} {3} {1,2} {4} {1,3} {1,2} {2,3} {1,3} {1,4} {2,3} {2,4} {3,4} {1,3,4} {2,3,4}
Crossrefs
The version containing n appears to be A112575.
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A364534 counts sum-full subsets.
Triangles:
A365541 counts subsets with a semi-sum k.
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#, {2}], Length[#]]&]], {n,0,10}]
-
Python
from itertools import combinations def A367400(n): return (n*(n+1)>>1)+1+sum(1 for k in range(3,n+1) for w in (set(d) for d in combinations(range(1,n+1),k)) if not any({a,k-a}<=w for a in range(1,k+1>>1))) # Chai Wah Wu, Nov 21 2023
Formula
Conjectures from Chai Wah Wu, Nov 21 2023: (Start)
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - a(n-4) for n > 3.
G.f.: (-x^3 + x^2 + 1)/(x^4 - 2*x^3 + x^2 - 2*x + 1). (End)
Extensions
a(18)-a(33) from Chai Wah Wu, Nov 21 2023