cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A367407 a(n) = sqrt(A367406(n)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 4, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 12, 26, 9, 29, 30, 31, 8, 33, 34, 35, 37, 38, 39, 20, 41, 42, 43, 46, 47, 51, 53, 18, 55, 28, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 44, 89, 91, 93, 94, 95, 24, 97
Offset: 1

Views

Author

Amiram Eldar, Nov 17 2023

Keywords

Comments

A permutation of the positive integers.

Crossrefs

Programs

  • Mathematica
    s[n_] := Sqrt[n * Times @@ FactorInteger[n][[;;, 1]]]; s /@ Select[Range[100], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
  • PARI
    b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]^(f[i,2]+1), 0));}
    lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(sqrtint(b1), ", ")));}

Formula

a(n) = sqrt(A064549(A268335(n))).
a(n) = sqrt(A268335(n)*A367417(n)).
a(n) = A268335(n)/A367419(n).
Sum_{k=1..n} a(k) = c * n^2 / 2, where c = (zeta(3)/(zeta(2)*d^2)) * Product_{p prime} (1 - 1/(p^2*(p+1))) = A253905 * A065465 / d^3 = 1.29812028442810841122..., and d = A065463 is the asymptotic density of the exponentially odd numbers (A268335).

A367417 The squarefree kernels of the exponentially odd numbers: a(n) = A007947(A268335(n)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 2, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 6, 26, 3, 29, 30, 31, 2, 33, 34, 35, 37, 38, 39, 10, 41, 42, 43, 46, 47, 51, 53, 6, 55, 14, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 22, 89, 91, 93, 94, 95
Offset: 1

Views

Author

Amiram Eldar, Nov 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Times @@ FactorInteger[n][[;; , 1]]; s /@ Select[Range[200], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
  • PARI
    b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, f[i, 1], 0)); }
    lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(b1, ", "))); }

Formula

a(n) = A367406(n)/A268335(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (zeta(4)/d^2) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 1.25661974314007532208..., and d = A065463 is the asymptotic density of the exponentially odd numbers.

A367418 The exponentially odd numbers (A268335) divided by their squarefree kernels (A007947).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 9, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 17 2023

Keywords

Comments

Analogous to A102631, with the exponentially odd numbers instead of the square numbers (A000290).
All the terms are square numbers.

Crossrefs

Programs

  • Mathematica
    s[n_] := n / Times @@ FactorInteger[n][[;; , 1]]; s /@ Select[Range[200], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
  • PARI
    b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, f[i, 1]^(f[i, 2]-1), 0)); }
    lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(b1, ", "))); }

Formula

a(n) = A003557(A268335(n)).
a(n) = A268335(n)/A367417(n).
a(n) = A367419(n)^2.
a(n) = A268335(n)^2/A367406(n).
a(n) = A008833(A268335(n)). - Amiram Eldar, Nov 30 2023
Showing 1-3 of 3 results.