cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A367406 The exponentially odd numbers (A268335) multiplied by their squarefree kernels (A007947).

Original entry on oeis.org

1, 4, 9, 25, 36, 49, 16, 100, 121, 169, 196, 225, 289, 361, 441, 484, 529, 144, 676, 81, 841, 900, 961, 64, 1089, 1156, 1225, 1369, 1444, 1521, 400, 1681, 1764, 1849, 2116, 2209, 2601, 2809, 324, 3025, 784, 3249, 3364, 3481, 3721, 3844, 4225, 4356, 4489, 4761
Offset: 1

Views

Author

Amiram Eldar, Nov 17 2023

Keywords

Comments

Analogous to A355038, with the exponentially odd numbers instead of the square numbers (A000290).
This sequence is a permutation of the square numbers.

Crossrefs

Programs

  • Mathematica
    s[n_] := n * Times @@ FactorInteger[n][[;;, 1]]; s /@ Select[Range[100], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
  • PARI
    b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]^(f[i,2]+1), 0));}
    lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(b1, ", ")));}

Formula

a(n) = A064549(A268335(n)).
a(n) = A268335(n)*A367417(n).
a(n) = A367407(n)^2.
a(n) = A268335(n)^2/A367418(n).
Sum_{k=1..n} a(k) = c * n^3 / 3, where c = (Pi^2/(15*d^3)) * Product_{p prime} (1 - 1/(p^3*(p+1))) = 1.78385074227198915372..., and d = A065463 is the asymptotic density of the exponentially odd numbers.
a(n) = A053143(A268335(n)). - Amiram Eldar, Nov 30 2023

A367419 a(n) = sqrt(A367418(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Sqrt[n / Times @@ FactorInteger[n][[;; , 1]]]; s /@ Select[Range[200], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
  • PARI
    b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, f[i, 1]^(f[i, 2]-1), 0)); }
    lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(sqrtint(b1), ", "))); }

Formula

a(n) = sqrt(A003557(A268335(n))) = sqrt(A268335(n)/A367417(n)).
a(n) = A268335(n)/A367407(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/A065463 = 1.41956288050548591931... . - Amiram Eldar, Nov 17 2023
Showing 1-2 of 2 results.