A367416 Triangle read by rows: T(n,k) = number of solutions to +- 1^k +- 2^k +- 3^k +- ... +- n^k is a k-th power, n >= 2.
4, 8, 1, 16, 1, 32, 0, 2, 64, 6, 128, 8, 256, 16, 4, 512, 26, 1024, 17, 10, 2048, 67, 4, 3, 4096, 100, 10, 8192, 137, 34, 6, 16384, 426, 28, 1, 32768, 661, 96, 6, 65536, 1351, 146, 16, 8, 131072, 2637, 230, 15, 262144, 3831, 258, 40, 524288, 8095, 1130, 50
Offset: 2
Examples
Triangle begins: k = 1 2 3 4 5 n= 2: 4; n= 3: 8, 1; n= 4: 16, 1; n= 5: 32, 0, 2; n= 6: 64, 6; n= 7: 128, 8; n= 8: 256, 16, 4; n= 9: 512, 26; n=10: 1024, 17, 10; n=11: 2048, 67, 4, 3; n=12: 4096, 100, 10; n=13: 8192, 137, 34, 6; n=14: 16384, 426, 28, 1; n=15: 32768, 661, 96, 6; n=16: 65536, 1351, 146, 16, 8; n=17: 131072, 2637, 230, 15; n=18: 262144, 3831, 258, 40; n=19: 524288, 8095, 1130, 50; n=20: 1048576, 15241, 854, 77, 6; ... The T(6,2) = 6 solutions are: - 1^2 - 2^2 + 3^2 - 4^2 + 5^2 + 6^2 = 49 = 7^2, - 1^2 - 2^2 + 3^2 + 4^2 + 5^2 - 6^2 = 9 = 3^2, - 1^2 - 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = 81 = 9^2, + 1^2 - 2^2 + 3^2 - 4^2 - 5^2 + 6^2 = 1 = 1^2, + 1^2 + 2^2 - 3^2 + 4^2 + 5^2 - 6^2 = 1 = 1^2, + 1^2 + 2^2 + 3^2 - 4^2 - 5^2 + 6^2 = 9 = 3^2.
Programs
-
PARI
f(k,u)=my(x=0,v=vector(#u));for(i=1,#u,u[i]=if(u[i]==0,-1,1);v[i]=i^k);u*v~ is(k,u)=my(x=f(k,u));ispower(x,k) T(n,k)=my(u=vector(n,i,[0,1]),nbsol=0);if(k%2==1,u[1]=[1,1]);forvec(X=u,if(is(k,X),nbsol++));if(k%2==1,nbsol*=2);nbsol
Comments