cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367475 Expansion of e.g.f. 1 / (1 + 2 * log(1 - x))^3.

Original entry on oeis.org

1, 6, 54, 636, 9204, 157584, 3111312, 69533472, 1734229344, 47733263232, 1436801816448, 46942939272960, 1654215709835520, 62533593070755840, 2524077593084160000, 108339176213529384960, 4927173048408858531840, 236673892535088351744000
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2023

Keywords

Crossrefs

Programs

  • Maple
    A367475 := proc(n)
        option remember ;
        if n =0 then
            1;
        else
            2*add((2*k/n + 1) * (k-1)! * binomial(n,k) * procname(n-k),k=1..n) ;
        end if;
    end proc:
    seq(A367475(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    a(n) = sum(k=0, n, 2^k*(k+2)!*abs(stirling(n, k, 1)))/2;

Formula

a(n) = (1/2) * Sum_{k=0..n} 2^k * (k+2)! * |Stirling1(n,k)|.
a(0) = 1; a(n) = 2*Sum_{k=1..n} (2*k/n + 1) * (k-1)! * binomial(n,k) * a(n-k).