A367484 Number of integers of the form (x^4 + y^4) mod 3^n; a(n) = A289559(3^n).
1, 3, 7, 19, 55, 165, 493, 1477, 4429, 13287, 39859, 119575, 358723, 1076169, 3228505, 9685513, 29056537
Offset: 0
Programs
-
PARI
a(n) = #setbinop((x, y)->Mod(x,3^n)^4+Mod(y,3^n)^4, [0..3^n-1]);
-
Python
def A367484(n): m = 3**n return len({(pow(x,4,m)+pow(y,4,m))%m for x in range(m) for y in range(x+1)}) # Chai Wah Wu, Jan 23 2024
Formula
Conjecture: a(n) = 2*ceiling(3^(n+3)/80) - 1.
a(n) = A289559(3^n). - Thomas Scheuerle, Nov 20 2023
Comments