A367511 Highly composite numbers h(k) = A002182(k) such that h >= rad(h)^2, where rad() = A007947().
1, 4, 36, 48, 45360, 50400
Offset: 1
Examples
Let P(n) = A002110(n). a(1) = h(1) = 1 since 1 >= 1^2. a(2) = h(3) = 4 since 4 >= P(1)^2, 4 >= 2^2. a(3) = h(7) = 36 since 36 >= P(2)^2, 36 >= 6^2. a(4) = h(8) = 48 since 48 >= P(2)^2, 48 >= 6^2. a(5) = h(26) = 43560 since 43560 >= P(4)^2, where P(4) = 210, and 210^2 = 44100. a(6) = h(27) = 50400 since 50400 >= P(4)^2. Let V(i) = A301414(i) and let P(j) = A002110(j). Plot of highly composite h = V(i)*P(j) at (x,y) = (j,i), i = 1..16, j = 1..7, showing h in this sequence in parentheses, and h in A168263 marked with an asterisk (*): V(i)\P(j) 1 2 6 30 210 2310 30030 ... +--------------------------------------- 1 |(1*) 2* 6* 2 | (4*) 12* 60* 4 | 24* 120* 840* 6 | (36) 180* 1260* 8 | (48) 240 1680* 12 | 360 2520 27720* 24 | 720 5040 55440 720720 36 | 7560 83160 1081080 48 | 10080 110880 1441440 72 | 15120 166320 2162160 96 | 20160 221760 2882880 120 | 25200 277200 3603600 144 | 332640 4324320 216 | (45360) 498960 6486480 240 | (50400) 554400 7207200 ...
Links
- Srinivasa Ramanujan, Highly Composite Numbers, Proc. London Math. Soc. (1916) Vol. 2, No. 14, 347-409.
- D. B. Siano and J. D. Siano, An Algorithm for Generating Highly Composite Numbers, 1994.
Crossrefs
Programs
-
Mathematica
(* First load function f at A025487, then run the following: *) s = Union@ Flatten@ f[12]; t = Map[DivisorSigma[0, #] &, s]; h = Map[s[[FirstPosition[t, #][[1]]]] &, Union@ FoldList[Max, t]]; Reap[Do[If[# >= Product[Prime[j], {j, PrimeNu[#]}]^2, Sow[#]] &[ h[[i]] ], {i, Length[h]}] ][[-1, 1]]
Comments