cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367540 Number of discrete implications I : L_n^2 -> L_n defined on the finite chain L_n = {0,1,...n} which satisfy the consequent boundary, i.e., I(x,y) >= y for all x,y in L_n.

Original entry on oeis.org

1, 8, 205, 17108, 4693632, 4253751084, 12768573248145, 127147160484338304, 4204352991963054866432
Offset: 1

Views

Author

Marc Munar, Nov 22 2023

Keywords

Comments

Number of discrete implications I : L_n^2 -> L_n defined on the finite chain L_n={0,1,...n} satisfying the consequent boundary, i.e., the number of binary functions I : L_n^2 -> L_n such that I is decreasing in the first argument, increasing in the second argument, I(0,0) = I(n,n) = n and I(n,0) = 0 (discrete implication), and I(x,y) >= y for all x,y in L_n (consequent boundary).
The proposed formula is recursive and implemented using dynamic programming using Python. Only the first 9 terms could be obtained. See GitHub link.

Crossrefs

Particular case of the enumeration of discrete implications in general, enumerated in A360612.

Programs

  • Python
    See GitHub link

Formula

a(n) = Sum_{x in V_n'} G(v), where V_n' is the set of decreasing vectors v of n components whose entries are taken from L_n, v_1=n and v_i <= n-i+1 for all i in {2,...,n}, and G(v) is defined recursively as
G(v) = det(A(v)) - Sum_{x in V_n(v)\v} G(v), where
A(v)_{i,j} = binomial(n+v_j, n-i+j).
V_n(v) is the set of decreasing vectors x of n components, whose entries are taken from L_n, and x_i <= v_i for all i in {1,...,n}.
G(v) = binomial(n+k-1,k), if v=(k,0,...,0), with v being a vector of n components and 1 <= k <= n.