A367554 a(n) is the number of 2n-regular circulant graphs of order 53.
1, 1, 13, 100, 578, 2530, 8866, 25300, 60115, 120175, 204347, 297160, 371516, 400024, 371516, 297160, 204347, 120175, 60115, 25300, 8866, 2530, 578, 100, 13, 1, 1
Offset: 0
Links
- Brian Alspach and Marni Mishna, Enumeration of Cayley graphs and digraphs, Discr. Math., 256 (2002), 527-539.
- Marni Mishna, Home page.
- Marni Mishna, Publications.
- Marni Mishna, Cayley Graph Enumeration, Master's Thesis, Simon Fraser University, 2000. See p. 16 (which is p. 24 in the pdf).
Programs
-
Python
from math import gcd, comb from sympy import totient, divisors def A367554(n): return sum(totient(d)*comb(26//d,n//d) for d in divisors(gcd(n,26),generator=True))//26 # Chai Wah Wu, Nov 23 2023
-
SageMath
def a(k, p): return (2/(p-1)) * sum(euler_phi(d) * binomial((p-1)/(2*d), k/(2*d)) for d in divisors(gcd(k, p-1)/2)) # see Mishna; beware the missing prefactor (2/(p-1)) print([a(2*n, 53) for n in range(27)]) # Andrey Zabolotskiy, Nov 22 2023
Formula
Sum_n a(n) = 2581428 = A049287(53) = A285620(53) = A000031((53-1)/2). - Andrey Zabolotskiy, Nov 22 2023