cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A113550 a(n) = product of n successive numbers up to n, if n is odd a(n) = n*(n-1)*.. = n!, if n is even a(n) = n(n+1)(n+2)... 'n' terms.

Original entry on oeis.org

1, 6, 6, 840, 120, 332640, 5040, 259459200, 362880, 335221286400, 39916800, 647647525324800, 6227020800, 1748648318376960000, 1307674368000, 6288139352883548160000, 355687428096000, 29051203810321992499200000, 121645100408832000, 167683548393178540705382400000
Offset: 1

Views

Author

Amarnath Murthy, Nov 03 2005

Keywords

Examples

			a(3) = 3*2*1 = 6.
a(4) = 4*5*6*7 = 840.
		

Crossrefs

Programs

  • Mathematica
    n = 1; anfunc[n_] := (If [EvenQ[n], {an = n, Do[an = an*(n + i), {i, n - 1}]}, an = n! ]; an); Table[anfunc[n], {n, 1, 20}] (* Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Mar 10 2006 *)

Formula

a(2n-1) = (2n-1)!, a(2n) = (4n-1)!/(2n-1)!.
a(2n-1)*a(2n) = (4n-1)!.
Sum_{n>=1} 1/a(n) = sinh(1) + (sqrt(Pi)/2) * (exp(1/4) * erf(1/2) - exp(-1/4) * erfi(1/2)). - Amiram Eldar, Aug 15 2025

Extensions

More terms from Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Mar 10 2006

A367549 Decimal expansion of 1 - DawsonF(1/2).

Original entry on oeis.org

5, 7, 5, 5, 6, 3, 6, 1, 6, 4, 9, 7, 9, 7, 7, 7, 0, 4, 0, 6, 5, 9, 5, 7, 6, 4, 7, 5, 1, 0, 3, 3, 0, 4, 2, 8, 9, 0, 3, 5, 7, 0, 5, 2, 2, 6, 4, 0, 3, 0, 7, 9, 6, 1, 8, 4, 8, 6, 6, 0, 3, 0, 3, 3, 6, 6, 7, 5, 4, 8, 4, 5, 2, 4, 0, 4, 0, 8, 0, 5, 2, 3, 8, 3, 2, 2, 8, 7, 9, 8, 7, 1, 5, 2, 1, 3, 8, 7, 7, 7, 8, 5, 7, 4, 0, 3, 8, 3, 0, 2
Offset: 0

Views

Author

Peter Luschny, Nov 23 2023

Keywords

Examples

			0.57556361649797770406595764751033042890357052264030796184866030336675484524040...
		

Crossrefs

Programs

  • Maple
    1 - sqrt(Pi/4)*erfi(1/2)/exp(1/4): evalf(%, 109);
  • Mathematica
    N[1 - DawsonF[1/2], 110] // RealDigits // First

Formula

Equals 1 - sqrt(Pi/4) * erfi(1/2) / exp(1/4) = 1 - A019704 * A367563 / A092042.
Let C denote the constant. Then:
2*C - 1 = Sum_{n>=0} (-1)^n / Pochhammer(n, n).
2*(C - 1) = Sum_{n>=1} (-1)^n*Gamma(n) / Gamma(2*n).
Equals Integral_{x=0..oo} exp(-x)*cos(sqrt(x)) dx. - Kritsada Moomuang, Jun 06 2025
Showing 1-2 of 2 results.