cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A113551 a(n) = product of next n even numbers beginning with n if n is even, otherwise product of next n odd numbers beginning with n.

Original entry on oeis.org

1, 8, 105, 1920, 45045, 1290240, 43648605, 1703116800, 75293843625, 3719607091200, 203067496256625, 12140797545676800, 788917222956988125, 55362036808286208000, 4172583192219510193125, 336158287499913854976000
Offset: 1

Views

Author

Amarnath Murthy, Nov 03 2005

Keywords

Examples

			a(3) = 3*5*7 = 105, a(4) = 4*6*8*10 = 1920.
		

Crossrefs

Programs

  • Maple
    seq(mul((2*k+n), k=1..n)/3, n=1..16); # Zerinvary Lajos, Jan 29 2008
  • Mathematica
    Do[Print[Product[n + 2i, {i, 0, n - 1}]], {n, 1, 20}] (* Tracy Poff (tracy.poff(AT)gmail.com), Dec 31 2005 *)
    Table[Times@@Range[n,3n-2,2],{n,20}] (* or *) Table[(2^n Gamma[(3n)/2])/Gamma[n/2],{n,20}] (* Harvey P. Dale, Nov 28 2022 *)
  • PARI
    for(n=1,25, print1(prod(k=0,n-1, n+2*k), ", ")) \\ G. C. Greubel, Sep 30 2017

Formula

a(n) = 2^n*Gamma(3*n/2)/Gamma(n/2). Column 2 of A303489. - Peter Bala, Jan 12 2020
a(n) ~ 3^((3*n-1)/2) * n^n / exp(n). - Vaclav Kotesovec, Aug 29 2024

Extensions

More terms from Tracy Poff (tracy.poff(AT)gmail.com), Dec 31 2005

A113549 a(n) = product of n successive numbers up to n, if n is even a(n) = n*(n-1)*.. = n!, if n is odd a(n) = n(n+1)(n+2)... 'n' terms.

Original entry on oeis.org

1, 2, 60, 24, 15120, 720, 8648640, 40320, 8821612800, 3628800, 14079294028800, 479001600, 32382376266240000, 87178291200, 101421602465863680000, 20922789888000, 415017197290314178560000, 6402373705728000, 2149789081963827444940800000
Offset: 1

Views

Author

Amarnath Murthy, Nov 03 2005

Keywords

Examples

			a(3) = 3*4*5 = 60.
a(4) = 4*3*2*1 = 24.
		

Crossrefs

Cf. A113550.

Programs

  • Mathematica
    n = 1; anfunc[n_] := (If [OddQ[n], {an = n, Do[an = an*(n + i), {i, n - 1}]}, an = n! ]; an); Table[anfunc[n], {n, 1, 19}] (* Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Mar 10 2006 *)

Formula

a(1) = 1, a(2n) = (2n)!, a(2n-1) = (4n-3)!/(2n-2)!.
a(2n)*a(2n+1) = (4n+1)!.

Extensions

More terms from Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Mar 10 2006
Showing 1-2 of 2 results.