cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A113551 a(n) = product of next n even numbers beginning with n if n is even, otherwise product of next n odd numbers beginning with n.

Original entry on oeis.org

1, 8, 105, 1920, 45045, 1290240, 43648605, 1703116800, 75293843625, 3719607091200, 203067496256625, 12140797545676800, 788917222956988125, 55362036808286208000, 4172583192219510193125, 336158287499913854976000
Offset: 1

Views

Author

Amarnath Murthy, Nov 03 2005

Keywords

Examples

			a(3) = 3*5*7 = 105, a(4) = 4*6*8*10 = 1920.
		

Crossrefs

Programs

  • Maple
    seq(mul((2*k+n), k=1..n)/3, n=1..16); # Zerinvary Lajos, Jan 29 2008
  • Mathematica
    Do[Print[Product[n + 2i, {i, 0, n - 1}]], {n, 1, 20}] (* Tracy Poff (tracy.poff(AT)gmail.com), Dec 31 2005 *)
    Table[Times@@Range[n,3n-2,2],{n,20}] (* or *) Table[(2^n Gamma[(3n)/2])/Gamma[n/2],{n,20}] (* Harvey P. Dale, Nov 28 2022 *)
  • PARI
    for(n=1,25, print1(prod(k=0,n-1, n+2*k), ", ")) \\ G. C. Greubel, Sep 30 2017

Formula

a(n) = 2^n*Gamma(3*n/2)/Gamma(n/2). Column 2 of A303489. - Peter Bala, Jan 12 2020
a(n) ~ 3^((3*n-1)/2) * n^n / exp(n). - Vaclav Kotesovec, Aug 29 2024

Extensions

More terms from Tracy Poff (tracy.poff(AT)gmail.com), Dec 31 2005

A113550 a(n) = product of n successive numbers up to n, if n is odd a(n) = n*(n-1)*.. = n!, if n is even a(n) = n(n+1)(n+2)... 'n' terms.

Original entry on oeis.org

1, 6, 6, 840, 120, 332640, 5040, 259459200, 362880, 335221286400, 39916800, 647647525324800, 6227020800, 1748648318376960000, 1307674368000, 6288139352883548160000, 355687428096000, 29051203810321992499200000, 121645100408832000, 167683548393178540705382400000
Offset: 1

Views

Author

Amarnath Murthy, Nov 03 2005

Keywords

Examples

			a(3) = 3*2*1 = 6.
a(4) = 4*5*6*7 = 840.
		

Crossrefs

Programs

  • Mathematica
    n = 1; anfunc[n_] := (If [EvenQ[n], {an = n, Do[an = an*(n + i), {i, n - 1}]}, an = n! ]; an); Table[anfunc[n], {n, 1, 20}] (* Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Mar 10 2006 *)

Formula

a(2n-1) = (2n-1)!, a(2n) = (4n-1)!/(2n-1)!.
a(2n-1)*a(2n) = (4n-1)!.
Sum_{n>=1} 1/a(n) = sinh(1) + (sqrt(Pi)/2) * (exp(1/4) * erf(1/2) - exp(-1/4) * erfi(1/2)). - Amiram Eldar, Aug 15 2025

Extensions

More terms from Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Mar 10 2006
Showing 1-2 of 2 results.