Original entry on oeis.org
1, 4, 35, 240, 3003, 26880, 415701, 4435200, 79676025, 968647680, 19535112675, 263472168960, 5837993287875, 85816649318400, 2058476433304725, 32567418416332800, 836589039864843825, 14112547980410880000
Offset: 1
a(1) = (1)/(1) = 1.
a(2) = (2*4)/(2) = 4.
a(3) = (3*5*7)/(3*1) = 35.
a(4) = (4*6*8*10)/(4*2) = 240.
a(5) = (5*7*9*11*13)/(5*3*1) = 3003.
a(6) = (6*8*10*12*14*16)/(6*4*2) = 26880.
Original entry on oeis.org
0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0
a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
-
a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
seq(a(n), n=0..15); # Alois P. Heinz, Aug 02 2024
-
s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
Table[u[n], {n, 0, 20}]
-
a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024
A303486
a(n) = n! * [x^n] 1/(1 - 3*x)^(n/3).
Original entry on oeis.org
1, 1, 10, 162, 3640, 104720, 3674160, 152152000, 7264216960, 392841187200, 23734494784000, 1584471003315200, 115825295634048000, 9201578813819392000, 789383453851632640000, 72728093032166347776000, 7162140885524461957120000, 750766815289210771251200000
Offset: 0
a(1) = 1;
a(2) = 2*5 = 10;
a(3) = 3*6*9 = 162;
a(4) = 4*7*10*13 = 3640;
a(5) = 5*8*11*14*17 = 104720, etc.
Cf.
A000407,
A007559,
A008544,
A032031,
A034000,
A034001,
A051604,
A051605,
A051606,
A051607,
A051608,
A051609,
A113551,
A303487,
A303488.
-
Table[n! SeriesCoefficient[1/(1 - 3 x)^(n/3), {x, 0, n}], {n, 0, 17}]
Table[Product[3 k + n, {k, 0, n - 1}], {n, 0, 17}]
Table[3^n Pochhammer[n/3, n], {n, 0, 17}]
A303487
a(n) = n! * [x^n] 1/(1 - 4*x)^(n/4).
Original entry on oeis.org
1, 1, 12, 231, 6144, 208845, 8648640, 422463195, 23781703680, 1515973484025, 107941254220800, 8491022274509775, 731304510986649600, 68444451854354701125, 6916953288171902976000, 750681472158682148959875, 87076954662428278259712000, 10751175443940144673035200625
Offset: 0
a(1) = 1;
a(2) = 2*6 = 12;
a(3) = 3*7*11 = 231;
a(4) = 4*8*12*16 = 6144;
a(5) = 5*9*13*17*21 = 208845, etc.
Cf.
A000407,
A001813,
A007696,
A008545,
A034176,
A034177,
A047053,
A051617,
A051618,
A051619,
A051620,
A051621,
A051622,
A113551,
A303486,
A303488.
-
Table[n! SeriesCoefficient[1/(1 - 4 x)^(n/4), {x, 0, n}], {n, 0, 17}]
Table[Product[4 k + n, {k, 0, n - 1}], {n, 0, 17}]
Table[4^n Pochhammer[n/4, n], {n, 0, 17}]
A303489
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = n! * [x^n] 1/(1 - k*x)^(n/k).
Original entry on oeis.org
1, 1, 1, 1, 1, 6, 1, 1, 8, 60, 1, 1, 10, 105, 840, 1, 1, 12, 162, 1920, 15120, 1, 1, 14, 231, 3640, 45045, 332640, 1, 1, 16, 312, 6144, 104720, 1290240, 8648640, 1, 1, 18, 405, 9576, 208845, 3674160, 43648605, 259459200, 1, 1, 20, 510, 14080, 375000, 8648640, 152152000, 1703116800, 8821612800
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
6, 8, 10, 12, 14, 16, ...
60, 105, 162, 231, 312, 405, ...
840, 1920, 3640, 6144, 9576, 14080, ...
15120, 45045, 104720, 208845, 375000, 623645, ...
=========================================================
A(1,1) = 1;
A(2,1) = 2*3 = 6;
A(3,1) = 3*4*5 = 60;
A(4,1) = 4*5*6*7 = 840;
A(5,1) = 5*6*7*8*9 = 15120, etc.
...
A(1,2) = 1;
A(2,2) = 2*4 = 8;
A(3,2) = 3*5*7 = 105;
A(4,2) = 4*6*8*10 = 1920;
A(5,2) = 5*7*9*11*13 = 45045, etc.
...
A(1,3) = 1;
A(2,3) = 2*5 = 10;
A(3,3) = 3*6*9 = 162;
A(4,3) = 4*7*10*13 = 3640;
A(5,3) = 5*8*11*14*17 = 104720, etc.
...
-
Table[Function[k, n! SeriesCoefficient[1/(1 - k x)^(n/k), {x, 0, n}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
Table[Function[k, Product[k i + n, {i, 0, n - 1}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
Table[Function[k, k^n Pochhammer[n/k, n]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
A303488
a(n) = n! * [x^n] 1/(1 - 5*x)^(n/5).
Original entry on oeis.org
1, 1, 14, 312, 9576, 375000, 17873856, 1004306688, 65006637696, 4763494479744, 389812500000000, 35237024762075136, 3487065897634615296, 374960171943074285568, 43532820293400237735936, 5427359437500000000000000, 723181462895975365595529216, 102563963819340862347122245632
Offset: 0
a(1) = 1;
a(2) = 2*7 = 14;
a(3) = 3*8*13 = 312;
a(4) = 4*9*14*19 = 9576;
a(5) = 5*10*15*20*25 = 375000, etc.
Cf.
A008546,
A008548,
A034300,
A034301,
A034323,
A034325,
A047055,
A047056,
A051687,
A051688,
A051689,
A051690,
A051691,
A052562,
A113551,
A303486,
A303487.
-
Table[n! SeriesCoefficient[1/(1 - 5 x)^(n/5), {x, 0, n}], {n, 0, 17}]
Table[Product[5 k + n, {k, 0, n - 1}], {n, 0, 17}]
Table[5^n Pochhammer[n/5, n], {n, 0, 17}]
A343445
Coefficients of the series S(p, q) for which (-sqrt(p))*S converges to the largest real root of x^3 - p*x + q for 0 < p and 0 < q < 2*(p/3)^(3/2).
Original entry on oeis.org
-1, 1, 3, 24, 315, 5760, 135135, 3870720, 130945815, 5109350400, 225881530875, 11158821273600, 609202488769875, 36422392637030400, 2366751668870964375, 166086110424858624000, 12517749576658530579375, 1008474862499741564928000, 86485131825133787772901875
Offset: 0
-
a := proc(n) option remember; if n = 1 then 1 elif n = 2 then 3 else 3*(3*n - 5)*(3*n - 7)*a(n-2) fi; end:
seq(a(n), n = 1..20); # Peter Bala, Jul 23 2024
-
Clear[a]; a = Table[2^(n - 1)Gamma[(3*n - 1)/2]/Gamma[(n + 1)/2], {n, 0, 20}] (* or equivalently *)
Clear[a]; a = Table[2^(n - 1)Pochhammer[(n + 1)/2, n - 1], {n, 0, 20}]
A384167
a(n) = 2^n * n! * binomial(3*n/2,n) * Sum_{k=1..n} 1/(n+2*k).
Original entry on oeis.org
1, 10, 143, 2736, 66009, 1926912, 66086271, 2605455360, 116123049585, 5774107852800, 316921177332495, 19032668386099200, 1241454631056114825, 87402945316493721600, 6606130538582006306175, 533534147838972474163200, 45855293972076668267481825, 4178822478568980876361728000
Offset: 1
-
a(n) = sum(k=0, n, k*(n+2)^(k-1)*2^(n-k)*abs(stirling(n, k, 1)));
A293470
a(n) = [x^n] (1/(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - 6*x/(1 - ...))))))))^n, a continued fraction.
Original entry on oeis.org
1, 1, 7, 64, 691, 8506, 117586, 1811902, 30977059, 585159526, 12157511122, 276365651992, 6835179127294, 182885413524568, 5265255383238592, 162296482607602714, 5332203008816278819, 185989603728568482598, 6863252473075010369626, 267102762222709967674384, 10932746393513621360731066
Offset: 0
-
Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-k x, 1, {k, 1, n}])^n, {x, 0, n}], {n, 0, 20}]
Table[SeriesCoefficient[Sum[(2 k - 1)!! x^k, {k, 0, n}]^n, {x, 0, n}], {n, 0, 20}]
Showing 1-9 of 9 results.
Comments