cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A128811 A113551(n)/A006882(n).

Original entry on oeis.org

1, 4, 35, 240, 3003, 26880, 415701, 4435200, 79676025, 968647680, 19535112675, 263472168960, 5837993287875, 85816649318400, 2058476433304725, 32567418416332800, 836589039864843825, 14112547980410880000
Offset: 1

Views

Author

Jonathan Vos Post, Apr 10 2007

Keywords

Comments

a(n) is to A001700 as n!! is to n!.

Examples

			a(1) = (1)/(1) = 1.
a(2) = (2*4)/(2) = 4.
a(3) = (3*5*7)/(3*1) = 35.
a(4) = (4*6*8*10)/(4*2) = 240.
a(5) = (5*7*9*11*13)/(5*3*1) = 3003.
a(6) = (6*8*10*12*14*16)/(6*4*2) = 26880.
		

Crossrefs

Formula

a(n) = n * (n+2) * ... * ((3*n)-2) / n!!.

Extensions

Corrected and extended by Klaus Brockhaus, Apr 15 2007

A374848 Obverse convolution A000045**A000045; see Comments.

Original entry on oeis.org

0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2024

Keywords

Comments

The obverse convolution of sequences
s = (s(0), s(1), ...) and t = (t(0), t(1), ...)
is introduced here as the sequence s**t given by
s**t(n) = (s(0)+t(n)) * (s(1)+t(n-1)) * ... * (s(n)+t(0)).
Swapping * and + in the representation s(0)*t(n) + s(1)*t(n-1) + ... + s(n)*t(0)
of ordinary convolution yields s**t.
If x is an indeterminate or real (or complex) variable, then for every sequence t of real (or complex) numbers, s**t is a sequence of polynomials p(n) in x, and the zeros of p(n) are the numbers -t(0), -t(1), ..., -t(n).
Following are abbreviations in the guide below for triples (s, t, s**t):
F = (0,1,1,2,3,5,...) = A000045, Fibonacci numbers
L = (2,1,3,4,7,11,...) = A000032, Lucas numbers
P = (2,3,5,7,11,...) = A000040, primes
T = (1,3,6,10,15,...) = A000217, triangular numbers
C = (1,2,6,20,70, ...) = A000984, central binomial coefficients
LW = (1,3,4,6,8,9,...) = A000201, lower Wythoff sequence
UW = (2,5,7,10,13,...) = A001950, upper Wythoff sequence
[ ] = floor
In the guide below, sequences s**t are identified with index numbers Axxxxxx; in some cases, s**t and Axxxxxx differ in one or two initial terms.
Table 1. s = A000012 = (1,1,1,1...) = (1);
t = A000012; 1 s**t = A000079; 2^(n+1)
t = A000027; n s**t = A000142; (n+1)!
t = A000040, P s**t = A054640
t = A000040, P (1/3) s**t = A374852
t = A000079, 2^n s**t = A028361
t = A000079, 2^n (1/3) s**t = A028362
t = A000045, F s**t = A082480
t = A000032, L s**t = A374890
t = A000201, LW s**t = A374860
t = A001950, UW s**t = A374864
t = A005408, 2*n+1 s**t = A000165, 2^n*n!
t = A016777, 3*n+1 s**t = A008544
t = A016789, 3*n+2 s**t = A032031
t = A000142, n! s**t = A217757
t = A000051, 2^n+1 s**t = A139486
t = A000225, 2^n-1 s**t = A006125
t = A032766, [3*n/2] s**t = A111394
t = A034472, 3^n+1 s**t = A153280
t = A024023, 3^n-1 s**t = A047656
t = A000217, T s**t = A128814
t = A000984, C s**t = A374891
t = A279019, n^2-n s**t = A130032
t = A004526, 1+[n/2] s**t = A010551
t = A002264, 1+[n/3] s**t = A264557
t = A002265, 1+[n/4] s**t = A264635
Sequences (c)**L, for c=2..4: A374656 to A374661
Sequences (c)**F, for c=2..6: A374662, A374662, A374982 to A374855
The obverse convolutions listed in Table 1 are, trivially, divisibility sequences. Likewise, if s = (-1,-1,-1,...) instead of s = (1,1,1,...), then s**t is a divisibility sequence for every choice of t; e.g. if s = (-1,-1,-1,...) and t = A279019, then s**t = A130031.
Table 2. s = A000027 = (0,1,2,3,4,5,...) = (n);
t = A000027, n s**t = A007778, n^(n+1)
t = A000290, n^2 s**t = A374881
t = A000040, P s**t = A374853
t = A000045, F s**t = A374857
t = A000032, L s**t = A374858
t = A000079, 2^n s**t = A374859
t = A000201, LW s**t = A374861
t = A005408, 2*n+1 s**t = A000407, (2*n+1)! / n!
t = A016777, 3*n+1 s**t = A113551
t = A016789, 3*n+2 s**t = A374866
t = A000142, n! s**t = A374871
t = A032766, [3*n/2] s**t = A374879
t = A000217, T s**t = A374892
t = A000984, C s**t = A374893
t = A038608, n*(-1)^n s**t = A374894
Table 3. s = A000290 = (0,1,4,9,16,...) = (n^2);
t = A000290, n^2 s**t = A323540
t = A002522, n^2+1 s**t = A374884
t = A000217, T s**t = A374885
t = A000578, n^3 s**t = A374886
t = A000079, 2^n s**t = A374887
t = A000225, 2^n-1 s**t = A374888
t = A005408, 2*n+1 s**t = A374889
t = A000045, F s**t = A374890
Table 4. s = t;
s = t = A000012, 1 s**s = A000079; 2^(n+1)
s = t = A000027, n s**s = A007778, n^(n+1)
s = t = A000290, n^2 s**s = A323540
s = t = A000045, F s**s = this sequence
s = t = A000032, L s**s = A374850
s = t = A000079, 2^n s**s = A369673
s = t = A000244, 3^n s**s = A369674
s = t = A000040, P s**s = A374851
s = t = A000201, LW s**s = A374862
s = t = A005408, 2*n+1 s**s = A062971
s = t = A016777, 3*n+1 s**s = A374877
s = t = A016789, 3*n+2 s**s = A374878
s = t = A032766, [3*n/2] s**s = A374880
s = t = A000217, T s**s = A375050
s = t = A005563, n^2-1 s**s = A375051
s = t = A279019, n^2-n s**s = A375056
s = t = A002398, n^2+n s**s = A375058
s = t = A002061, n^2+n+1 s**s = A375059
If n = 2*k+1, then s**s(n) is a square; specifically,
s**s(n) = ((s(0)+s(n))*(s(1)+s(n-1))*...*(s(k)+s(k+1)))^2.
If n = 2*k, then s**s(n) has the form 2*s(k)*m^2, where m is an integer.
Table 5. Others
s = A000201, LW t = A001950, UW s**t = A374863
s = A000045, F t = A000032, L s**t = A374865
s = A005843, 2*n t = A005408, 2*n+1 s**t = A085528, (2*n+1)^(n+1)
s = A016777, 3*n+1 t = A016789, 3*n+2 s**t = A091482
s = A005408, 2*n+1 t = A000045, F s**t = A374867
s = A005408, 2*n+1 t = A000032, L s**t = A374868
s = A005408, 2*n+1 t = A000079, 2^n s**t = A374869
s = A000027, n t = A000142, n! s**t = A374871
s = A005408, 2*n+1 t = A000142, n! s**t = A374872
s = A000079, 2^n t = A000142, n! s**t = A374874
s = A000142, n! t = A000045, F s**t = A374875
s = A000142, n! t = A000032, L s**t = A374876
s = A005408, 2*n+1 t = A016777, 3*n+1 s**t = A352601
s = A005408, 2*n+1 t = A016789, 3*n+2 s**t = A064352
Table 6. Arrays of coefficients of s(x)**t(x), where s(x) and t(x) are polynomials
s(x) t(x) s(x)**t(x)
n x A132393
n^2 x A269944
x+1 x+1 A038220
x+2 x+2 A038244
x x+3 A038220
nx x+1 A094638
1 x^2+x+1 A336996
n^2 x x+1 A375041
n^2 x 2x+1 A375042
n^2 x x+2 A375043
2^n x x+1 A375044
2^n 2x+1 A375045
2^n x+2 A375046
x+1 F(n) A375047
x+1 x+F(n) A375048
x+F(n) x+F(n) A375049

Examples

			a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
    Table[u[n], {n, 0, 20}]
  • PARI
    a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024

Formula

a(n) ~ c * phi^(3*n^2/4 + n) / 5^((n+1)/2), where c = QPochhammer(-1, 1/phi^2)^2/2 if n is even and c = phi^(1/4) * QPochhammer(-phi, 1/phi^2)^2 / (phi + 1)^2 if n is odd, and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 01 2024

A303486 a(n) = n! * [x^n] 1/(1 - 3*x)^(n/3).

Original entry on oeis.org

1, 1, 10, 162, 3640, 104720, 3674160, 152152000, 7264216960, 392841187200, 23734494784000, 1584471003315200, 115825295634048000, 9201578813819392000, 789383453851632640000, 72728093032166347776000, 7162140885524461957120000, 750766815289210771251200000
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2018

Keywords

Examples

			a(1) = 1;
a(2) = 2*5 = 10;
a(3) = 3*6*9 = 162;
a(4) = 4*7*10*13 = 3640;
a(5) = 5*8*11*14*17 = 104720, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 - 3 x)^(n/3), {x, 0, n}], {n, 0, 17}]
    Table[Product[3 k + n, {k, 0, n - 1}], {n, 0, 17}]
    Table[3^n Pochhammer[n/3, n], {n, 0, 17}]

Formula

a(n) = Product_{k=0..n-1} (3*k + n).
a(n) = 3^n*Gamma(4*n/3)/Gamma(n/3).
a(n) ~ 2^(8*n/3-1)*n^n/exp(n).

A303487 a(n) = n! * [x^n] 1/(1 - 4*x)^(n/4).

Original entry on oeis.org

1, 1, 12, 231, 6144, 208845, 8648640, 422463195, 23781703680, 1515973484025, 107941254220800, 8491022274509775, 731304510986649600, 68444451854354701125, 6916953288171902976000, 750681472158682148959875, 87076954662428278259712000, 10751175443940144673035200625
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2018

Keywords

Examples

			a(1) = 1;
a(2) = 2*6 = 12;
a(3) = 3*7*11 = 231;
a(4) = 4*8*12*16 = 6144;
a(5) = 5*9*13*17*21 = 208845, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 - 4 x)^(n/4), {x, 0, n}], {n, 0, 17}]
    Table[Product[4 k + n, {k, 0, n - 1}], {n, 0, 17}]
    Table[4^n Pochhammer[n/4, n], {n, 0, 17}]

Formula

a(n) = Product_{k=0..n-1} (4*k + n).
a(n) = 4^n*Gamma(5*n/4)/Gamma(n/4).
a(n) ~ 5^(5*n/4-1/2)*n^n/exp(n).

A303489 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = n! * [x^n] 1/(1 - k*x)^(n/k).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 8, 60, 1, 1, 10, 105, 840, 1, 1, 12, 162, 1920, 15120, 1, 1, 14, 231, 3640, 45045, 332640, 1, 1, 16, 312, 6144, 104720, 1290240, 8648640, 1, 1, 18, 405, 9576, 208845, 3674160, 43648605, 259459200, 1, 1, 20, 510, 14080, 375000, 8648640, 152152000, 1703116800, 8821612800
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2018

Keywords

Examples

			Square array begins:
      1,      1,       1,       1,       1,       1,  ...
      1,      1,       1,       1,       1,       1,  ...
      6,      8,      10,      12,      14,      16,  ...
     60,    105,     162,     231,     312,     405,  ...
    840,   1920,    3640,    6144,    9576,   14080,  ...
  15120,  45045,  104720,  208845,  375000,  623645,  ...
=========================================================
A(1,1) = 1;
A(2,1) = 2*3 = 6;
A(3,1) = 3*4*5 = 60;
A(4,1) = 4*5*6*7 = 840;
A(5,1) = 5*6*7*8*9 = 15120, etc.
...
A(1,2) = 1;
A(2,2) = 2*4 = 8;
A(3,2) = 3*5*7 = 105;
A(4,2) = 4*6*8*10 = 1920;
A(5,2) = 5*7*9*11*13 = 45045, etc.
...
A(1,3) = 1;
A(2,3) = 2*5 = 10;
A(3,3) = 3*6*9 = 162;
A(4,3) = 4*7*10*13 = 3640;
A(5,3) = 5*8*11*14*17 = 104720, etc.
...
		

Crossrefs

Columns k=1..5 give A000407, A113551, A303486, A303487, A303488.
Main diagonal gives A061711.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[1/(1 - k x)^(n/k), {x, 0, n}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
    Table[Function[k, Product[k i + n, {i, 0, n - 1}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
    Table[Function[k, k^n Pochhammer[n/k, n]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten

Formula

A(n,k) = Product_{j=0..n-1} (k*j + n).

A303488 a(n) = n! * [x^n] 1/(1 - 5*x)^(n/5).

Original entry on oeis.org

1, 1, 14, 312, 9576, 375000, 17873856, 1004306688, 65006637696, 4763494479744, 389812500000000, 35237024762075136, 3487065897634615296, 374960171943074285568, 43532820293400237735936, 5427359437500000000000000, 723181462895975365595529216, 102563963819340862347122245632
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2018

Keywords

Examples

			a(1) = 1;
a(2) = 2*7 = 14;
a(3) = 3*8*13 = 312;
a(4) = 4*9*14*19 = 9576;
a(5) = 5*10*15*20*25 = 375000, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 - 5 x)^(n/5), {x, 0, n}], {n, 0, 17}]
    Table[Product[5 k + n, {k, 0, n - 1}], {n, 0, 17}]
    Table[5^n Pochhammer[n/5, n], {n, 0, 17}]

Formula

a(n) = Product_{k=0..n-1} (5*k + n).
a(n) = 5^n*Gamma(6*n/5)/Gamma(n/5).
a(n) ~ 6^(6*n/5-1/2)*n^n/exp(n).

A343445 Coefficients of the series S(p, q) for which (-sqrt(p))*S converges to the largest real root of x^3 - p*x + q for 0 < p and 0 < q < 2*(p/3)^(3/2).

Original entry on oeis.org

-1, 1, 3, 24, 315, 5760, 135135, 3870720, 130945815, 5109350400, 225881530875, 11158821273600, 609202488769875, 36422392637030400, 2366751668870964375, 166086110424858624000, 12517749576658530579375, 1008474862499741564928000, 86485131825133787772901875
Offset: 0

Views

Author

Dixon J. Jones, Apr 15 2021

Keywords

Comments

Based on formulas for series solutions of trinomials given in Eagle article.

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 1 then 1 elif n = 2 then 3 else 3*(3*n - 5)*(3*n - 7)*a(n-2) fi; end:
    seq(a(n), n = 1..20); # Peter Bala, Jul 23 2024
  • Mathematica
    Clear[a]; a = Table[2^(n - 1)Gamma[(3*n - 1)/2]/Gamma[(n + 1)/2], {n, 0, 20}] (* or equivalently *)
    Clear[a]; a = Table[2^(n - 1)Pochhammer[(n + 1)/2, n - 1], {n, 0, 20}]

Formula

a(n) = 2^(n - 1) * Gamma((3*n - 1)/2) / Gamma((n + 1)/2).
a(n) = 2^(n - 1) * ((n + 1)/2)_(n - 1), where (x)_k is the Pochhammer symbol for Gamma(x + k) / Gamma(k).
a(n) = 3*A113551(n-1) for n>=2. - Hugo Pfoertner, Apr 16 2021
E.g.f.: (sqrt(3)*sin(arcsin(3*sqrt(3)*x)/3) - 3*cos(arcsin(3*sqrt(3)*x)/3))/3. - Stefano Spezia, May 23 2021
a(n) = 3*(3*n - 5)*(3*n - 7)*a(n-2) with a(0) = -1, a(1) = 1 and a(2) = 3. - Peter Bala, Jul 23 2024
a(n) ~ 3^(3*n/2-1) * n^(n-1) / exp(n). - Amiram Eldar, Sep 02 2025

A384167 a(n) = 2^n * n! * binomial(3*n/2,n) * Sum_{k=1..n} 1/(n+2*k).

Original entry on oeis.org

1, 10, 143, 2736, 66009, 1926912, 66086271, 2605455360, 116123049585, 5774107852800, 316921177332495, 19032668386099200, 1241454631056114825, 87402945316493721600, 6606130538582006306175, 533534147838972474163200, 45855293972076668267481825, 4178822478568980876361728000
Offset: 1

Views

Author

Seiichi Manyama, May 21 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, k*(n+2)^(k-1)*2^(n-k)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} k * (n+2)^(k-1) * 2^(n-k) * |Stirling1(n,k)|.
a(n) = n! * [x^n] ( -log(1 - 2*x)/(2 * (1 - 2*x)^(n/2+1)) ).

A293470 a(n) = [x^n] (1/(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - 6*x/(1 - ...))))))))^n, a continued fraction.

Original entry on oeis.org

1, 1, 7, 64, 691, 8506, 117586, 1811902, 30977059, 585159526, 12157511122, 276365651992, 6835179127294, 182885413524568, 5265255383238592, 162296482607602714, 5332203008816278819, 185989603728568482598, 6863252473075010369626, 267102762222709967674384, 10932746393513621360731066
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 09 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-k x, 1, {k, 1, n}])^n, {x, 0, n}], {n, 0, 20}]
    Table[SeriesCoefficient[Sum[(2 k - 1)!! x^k, {k, 0, n}]^n, {x, 0, n}], {n, 0, 20}]

Formula

a(n) ~ 2^(n + 1/2) * n^(n+1) / exp(n - 1/2). - Vaclav Kotesovec, Sep 16 2021
Showing 1-9 of 9 results.