A303486
a(n) = n! * [x^n] 1/(1 - 3*x)^(n/3).
Original entry on oeis.org
1, 1, 10, 162, 3640, 104720, 3674160, 152152000, 7264216960, 392841187200, 23734494784000, 1584471003315200, 115825295634048000, 9201578813819392000, 789383453851632640000, 72728093032166347776000, 7162140885524461957120000, 750766815289210771251200000
Offset: 0
a(1) = 1;
a(2) = 2*5 = 10;
a(3) = 3*6*9 = 162;
a(4) = 4*7*10*13 = 3640;
a(5) = 5*8*11*14*17 = 104720, etc.
Cf.
A000407,
A007559,
A008544,
A032031,
A034000,
A034001,
A051604,
A051605,
A051606,
A051607,
A051608,
A051609,
A113551,
A303487,
A303488.
-
Table[n! SeriesCoefficient[1/(1 - 3 x)^(n/3), {x, 0, n}], {n, 0, 17}]
Table[Product[3 k + n, {k, 0, n - 1}], {n, 0, 17}]
Table[3^n Pochhammer[n/3, n], {n, 0, 17}]
A303489
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = n! * [x^n] 1/(1 - k*x)^(n/k).
Original entry on oeis.org
1, 1, 1, 1, 1, 6, 1, 1, 8, 60, 1, 1, 10, 105, 840, 1, 1, 12, 162, 1920, 15120, 1, 1, 14, 231, 3640, 45045, 332640, 1, 1, 16, 312, 6144, 104720, 1290240, 8648640, 1, 1, 18, 405, 9576, 208845, 3674160, 43648605, 259459200, 1, 1, 20, 510, 14080, 375000, 8648640, 152152000, 1703116800, 8821612800
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
6, 8, 10, 12, 14, 16, ...
60, 105, 162, 231, 312, 405, ...
840, 1920, 3640, 6144, 9576, 14080, ...
15120, 45045, 104720, 208845, 375000, 623645, ...
=========================================================
A(1,1) = 1;
A(2,1) = 2*3 = 6;
A(3,1) = 3*4*5 = 60;
A(4,1) = 4*5*6*7 = 840;
A(5,1) = 5*6*7*8*9 = 15120, etc.
...
A(1,2) = 1;
A(2,2) = 2*4 = 8;
A(3,2) = 3*5*7 = 105;
A(4,2) = 4*6*8*10 = 1920;
A(5,2) = 5*7*9*11*13 = 45045, etc.
...
A(1,3) = 1;
A(2,3) = 2*5 = 10;
A(3,3) = 3*6*9 = 162;
A(4,3) = 4*7*10*13 = 3640;
A(5,3) = 5*8*11*14*17 = 104720, etc.
...
-
Table[Function[k, n! SeriesCoefficient[1/(1 - k x)^(n/k), {x, 0, n}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
Table[Function[k, Product[k i + n, {i, 0, n - 1}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
Table[Function[k, k^n Pochhammer[n/k, n]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
A303488
a(n) = n! * [x^n] 1/(1 - 5*x)^(n/5).
Original entry on oeis.org
1, 1, 14, 312, 9576, 375000, 17873856, 1004306688, 65006637696, 4763494479744, 389812500000000, 35237024762075136, 3487065897634615296, 374960171943074285568, 43532820293400237735936, 5427359437500000000000000, 723181462895975365595529216, 102563963819340862347122245632
Offset: 0
a(1) = 1;
a(2) = 2*7 = 14;
a(3) = 3*8*13 = 312;
a(4) = 4*9*14*19 = 9576;
a(5) = 5*10*15*20*25 = 375000, etc.
Cf.
A008546,
A008548,
A034300,
A034301,
A034323,
A034325,
A047055,
A047056,
A051687,
A051688,
A051689,
A051690,
A051691,
A052562,
A113551,
A303486,
A303487.
-
Table[n! SeriesCoefficient[1/(1 - 5 x)^(n/5), {x, 0, n}], {n, 0, 17}]
Table[Product[5 k + n, {k, 0, n - 1}], {n, 0, 17}]
Table[5^n Pochhammer[n/5, n], {n, 0, 17}]
A384166
a(n) = Product_{k=0..n-1} (3*n+4*k).
Original entry on oeis.org
1, 3, 60, 1989, 92160, 5486535, 399072960, 34298042625, 3400783626240, 382128386114475, 47986411423104000, 6659996213472126525, 1012334387351519232000, 167253493686752981883375, 29842935065036371998720000, 5719198821953333723419037625, 1171620424982972483984424960000
Offset: 0
-
[1] cat [&*[(3*n + 4*k): k in [0..n-1]]: n in [1..16]]; // Vincenzo Librandi, May 22 2025
-
a[n_]:=Product[(3*n+4*k),{k,0,n-1}];Table[a[n],{n,0,15}] (* Vincenzo Librandi, May 22 2025 *)
-
a(n) = prod(k=0, n-1, 3*n+4*k);
-
from math import prod
def A384166(n): return prod(3*n+i for i in range(0,n<<2,4)) # Chai Wah Wu, May 21 2025
-
def a(n): return 4^n*rising_factorial(3*n/4, n)
A383996
a(n) = Product_{k=0..n-1} (n-4*k).
Original entry on oeis.org
1, 1, -4, 15, 0, -1155, 20160, -208845, 0, 68139225, -2075673600, 34976316375, 0, -25949801752875, 1126343522304000, -26264240610733125, 0, 34770736214117528625, -1958486116582195200000, 58318039100493206409375, 0, -120842042784862988395681875, 8366746697372733839769600000
Offset: 0
-
a(n) = prod(k=0, n-1, n-4*k);
-
def a(n): return 4^n*falling_factorial(n/4, n)
A384169
a(n) = 4^n * n! * binomial(5*n/4,n) * Sum_{k=1..n} 1/(n+4*k).
Original entry on oeis.org
1, 16, 347, 9856, 349269, 14885760, 742589175, 42479124480, 2742327328905, 197267905658880, 15649214440432275, 1357388618032742400, 127808331929417605725, 12983375200126773657600, 1415428114244995252270575, 164837363498660501913600000, 20423530465926352502482292625
Offset: 1
-
a(n) = sum(k=0, n, k*(n+4)^(k-1)*4^(n-k)*abs(stirling(n, k, 1)));
A384258
a(n) = Product_{k=0..n-1} (n+4*k+1).
Original entry on oeis.org
1, 2, 21, 384, 9945, 332640, 13627845, 660602880, 36974963025, 2346549004800, 166490632833525, 13059009124761600, 1122040194333683625, 104802322548059136000, 10572978481108199281125, 1145749403453003661312000, 132730561036298082383150625, 16369108295524571830763520000
Offset: 0
-
a(n) = prod(k=0, n-1, n+4*k+1);
-
def a(n): return 4^n*rising_factorial((n+1)/4, n)
A384259
a(n) = Product_{k=0..n-1} (n+4*k+3).
Original entry on oeis.org
1, 4, 45, 840, 21945, 737280, 30282525, 1470268800, 82380323025, 5231974809600, 371413503586125, 29144138639616000, 2504851570980383625, 234017443515727872000, 23613335889752371888125, 2559272716623604101120000, 296519181502679448839150625, 36572320958219876869079040000
Offset: 0
-
a(n) = prod(k=0, n-1, n+4*k+3);
-
def a(n): return 4^n*rising_factorial((n+3)/4, n)
Showing 1-8 of 8 results.