A113551
a(n) = product of next n even numbers beginning with n if n is even, otherwise product of next n odd numbers beginning with n.
Original entry on oeis.org
1, 8, 105, 1920, 45045, 1290240, 43648605, 1703116800, 75293843625, 3719607091200, 203067496256625, 12140797545676800, 788917222956988125, 55362036808286208000, 4172583192219510193125, 336158287499913854976000
Offset: 1
a(3) = 3*5*7 = 105, a(4) = 4*6*8*10 = 1920.
-
seq(mul((2*k+n), k=1..n)/3, n=1..16); # Zerinvary Lajos, Jan 29 2008
-
Do[Print[Product[n + 2i, {i, 0, n - 1}]], {n, 1, 20}] (* Tracy Poff (tracy.poff(AT)gmail.com), Dec 31 2005 *)
Table[Times@@Range[n,3n-2,2],{n,20}] (* or *) Table[(2^n Gamma[(3n)/2])/Gamma[n/2],{n,20}] (* Harvey P. Dale, Nov 28 2022 *)
-
for(n=1,25, print1(prod(k=0,n-1, n+2*k), ", ")) \\ G. C. Greubel, Sep 30 2017
More terms from Tracy Poff (tracy.poff(AT)gmail.com), Dec 31 2005
A303486
a(n) = n! * [x^n] 1/(1 - 3*x)^(n/3).
Original entry on oeis.org
1, 1, 10, 162, 3640, 104720, 3674160, 152152000, 7264216960, 392841187200, 23734494784000, 1584471003315200, 115825295634048000, 9201578813819392000, 789383453851632640000, 72728093032166347776000, 7162140885524461957120000, 750766815289210771251200000
Offset: 0
a(1) = 1;
a(2) = 2*5 = 10;
a(3) = 3*6*9 = 162;
a(4) = 4*7*10*13 = 3640;
a(5) = 5*8*11*14*17 = 104720, etc.
Cf.
A000407,
A007559,
A008544,
A032031,
A034000,
A034001,
A051604,
A051605,
A051606,
A051607,
A051608,
A051609,
A113551,
A303487,
A303488.
-
Table[n! SeriesCoefficient[1/(1 - 3 x)^(n/3), {x, 0, n}], {n, 0, 17}]
Table[Product[3 k + n, {k, 0, n - 1}], {n, 0, 17}]
Table[3^n Pochhammer[n/3, n], {n, 0, 17}]
A303487
a(n) = n! * [x^n] 1/(1 - 4*x)^(n/4).
Original entry on oeis.org
1, 1, 12, 231, 6144, 208845, 8648640, 422463195, 23781703680, 1515973484025, 107941254220800, 8491022274509775, 731304510986649600, 68444451854354701125, 6916953288171902976000, 750681472158682148959875, 87076954662428278259712000, 10751175443940144673035200625
Offset: 0
a(1) = 1;
a(2) = 2*6 = 12;
a(3) = 3*7*11 = 231;
a(4) = 4*8*12*16 = 6144;
a(5) = 5*9*13*17*21 = 208845, etc.
Cf.
A000407,
A001813,
A007696,
A008545,
A034176,
A034177,
A047053,
A051617,
A051618,
A051619,
A051620,
A051621,
A051622,
A113551,
A303486,
A303488.
-
Table[n! SeriesCoefficient[1/(1 - 4 x)^(n/4), {x, 0, n}], {n, 0, 17}]
Table[Product[4 k + n, {k, 0, n - 1}], {n, 0, 17}]
Table[4^n Pochhammer[n/4, n], {n, 0, 17}]
A303488
a(n) = n! * [x^n] 1/(1 - 5*x)^(n/5).
Original entry on oeis.org
1, 1, 14, 312, 9576, 375000, 17873856, 1004306688, 65006637696, 4763494479744, 389812500000000, 35237024762075136, 3487065897634615296, 374960171943074285568, 43532820293400237735936, 5427359437500000000000000, 723181462895975365595529216, 102563963819340862347122245632
Offset: 0
a(1) = 1;
a(2) = 2*7 = 14;
a(3) = 3*8*13 = 312;
a(4) = 4*9*14*19 = 9576;
a(5) = 5*10*15*20*25 = 375000, etc.
Cf.
A008546,
A008548,
A034300,
A034301,
A034323,
A034325,
A047055,
A047056,
A051687,
A051688,
A051689,
A051690,
A051691,
A052562,
A113551,
A303486,
A303487.
-
Table[n! SeriesCoefficient[1/(1 - 5 x)^(n/5), {x, 0, n}], {n, 0, 17}]
Table[Product[5 k + n, {k, 0, n - 1}], {n, 0, 17}]
Table[5^n Pochhammer[n/5, n], {n, 0, 17}]
A131182
Table T(n,k) = n!*k^n, read by upwards antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 8, 3, 1, 0, 24, 48, 18, 4, 1, 0, 120, 384, 162, 32, 5, 1, 0, 720, 3840, 1944, 384, 50, 6, 1, 0, 5040, 46080, 29160, 6144, 750, 72, 7, 1, 0, 40320, 645120, 524880, 122880, 15000, 1296, 98, 8, 1, 0, 362880, 10321920, 11022480, 2949120, 375000, 31104, 2058, 128, 9, 1
Offset: 0
The (inverted) table begins:
k=0: 1, 0, 0, 0, 0, 0, ... (A000007)
k=1: 1, 1, 2, 6, 24, 120, ... (A000142)
k=2: 1, 2, 8, 48, 384, 3840, ... (A000165)
k=3: 1, 3, 18, 162, 1944, 29160, ... (A032031)
k=4: 1, 4, 32, 384, 6144, 122880, ... (A047053)
k=5: 1, 5, 50, 750, 15000, 375000, ... (A052562)
k=6: 1, 6, 72, 1296, 31104, 933120, ... (A047058)
k=7: 1, 7, 98, 2058, 57624, 2016840, ... (A051188)
k=8: 1, 8, 128, 3072, 98304, 3932160, ... (A051189)
k=9: 1, 9, 162, 4374, 157464, 7085880, ... (A051232)
Main diagonal is 1, 1, 8, 162, 6144, 375000, ... (A061711).
-
T:= (n,k)-> n!*k^n:
seq(seq(T(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Jan 06 2019
-
from math import factorial
def A131182_T(n, k): # compute T(n, k)
return factorial(n)*k**n # Chai Wah Wu, Sep 01 2022
A384216
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = n! * [x^n] (1 + k*x)^(n/k).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 0, 6, 1, 1, -2, -3, 24, 1, 1, -4, 0, 0, 120, 1, 1, -6, 15, 40, 45, 720, 1, 1, -8, 42, 0, -280, 0, 5040, 1, 1, -10, 81, -264, -1155, 0, -1575, 40320, 1, 1, -12, 132, -896, 0, 20160, 24640, 0, 362880, 1, 1, -14, 195, -2040, 8645, 57456, -208845, -291200, 99225, 3628800
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 0, -2, -4, -6, -8, -10, ...
6, -3, 0, 15, 42, 81, 132, ...
24, 0, 40, 0, -264, -896, -2040, ...
120, 45, -280, -1155, 0, 8645, 33120, ...
720, 0, 0, 20160, 57456, 0, -459360, ...
Showing 1-6 of 6 results.
Comments