cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A384168 a(n) = 3^n * n! * binomial(4*n/3,n) * Sum_{k=1..n} 1/(n+3*k).

Original entry on oeis.org

1, 13, 234, 5566, 165944, 5966136, 251491120, 12169996912, 665146831680, 40530954643840, 2724842629685120, 200361647815660800, 15997170878205905920, 1378271357428552115200, 127459020533529062246400, 12593128815600367187507200, 1323895109721239722075136000
Offset: 1

Views

Author

Seiichi Manyama, May 21 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, k*(n+3)^(k-1)*3^(n-k)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} k * (n+3)^(k-1) * 3^(n-k) * |Stirling1(n,k)|.
a(n) = n! * [x^n] ( -log(1 - 3*x)/(3 * (1 - 3*x)^(n/3+1)) ).

A384169 a(n) = 4^n * n! * binomial(5*n/4,n) * Sum_{k=1..n} 1/(n+4*k).

Original entry on oeis.org

1, 16, 347, 9856, 349269, 14885760, 742589175, 42479124480, 2742327328905, 197267905658880, 15649214440432275, 1357388618032742400, 127808331929417605725, 12983375200126773657600, 1415428114244995252270575, 164837363498660501913600000, 20423530465926352502482292625
Offset: 1

Views

Author

Seiichi Manyama, May 21 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, k*(n+4)^(k-1)*4^(n-k)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} k * (n+4)^(k-1) * 4^(n-k) * |Stirling1(n,k)|.
a(n) = n! * [x^n] ( -log(1 - 4*x)/(4 * (1 - 4*x)^(n/4+1)) ).
Showing 1-2 of 2 results.