cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367564 Triangular array read by rows: T(n, k) = binomial(n, k) * A001333(n - k).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 9, 3, 1, 17, 28, 18, 4, 1, 41, 85, 70, 30, 5, 1, 99, 246, 255, 140, 45, 6, 1, 239, 693, 861, 595, 245, 63, 7, 1, 577, 1912, 2772, 2296, 1190, 392, 84, 8, 1, 1393, 5193, 8604, 8316, 5166, 2142, 588, 108, 9, 1, 3363, 13930, 25965, 28680, 20790, 10332, 3570, 840, 135, 10, 1
Offset: 0

Views

Author

Peter Luschny, Nov 25 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0]    1;
[1]    1,    1;
[2]    3,    2,    1;
[3]    7,    9,    3,    1;
[4]   17,   28,   18,    4,    1;
[5]   41,   85,   70,   30,    5,    1;
[6]   99,  246,  255,  140,   45,    6,   1;
[7]  239,  693,  861,  595,  245,   63,   7,   1;
[8]  577, 1912, 2772, 2296, 1190,  392,  84,   8, 1;
[9] 1393, 5193, 8604, 8316, 5166, 2142, 588, 108, 9, 1;
		

Crossrefs

Cf. A001333 (column 0), A006012 (row sums), A367211.

Programs

  • Maple
    P := proc(n) option remember; ifelse(n <= 1, 1, 2*P(n - 1) + P(n - 2)) end:
    T := (n, k) -> P(n - k) * binomial(n, k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
  • Mathematica
    P[n_] := P[n] = If[n <= 1, 1, 2 P[n - 1] + P[n - 2]];
    T[n_, k_] := P[n - k] Binomial[n, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 10 2024, after Peter Luschny *)

Formula

From Werner Schulte, Nov 26 2023: (Start)
The row polynomials p(n, x) = Sum_{k=0..n} T(n, k) * x^k satisfy:
a) p'(n, x) = n * p(n-1, x) where p' is the first derivative of p;
b) p(0, x) = 1, p(1, x) = 1 + x and p(n, x) = (2+2*x) * p(n-1, x) + (1-2*x-x^2) * p(n-2, x) for n > 1.
T(n, 0) = A001333(n) for n >= 0 and T(n, k) = T(n-1, k-1) * n / k for 0 < k <= n.
G.f.: (1 - (1+x) * t) / (1 - (2+2*x) * t - (1-2*x-x^2) * t^2). (End)