A367579 Irregular triangle read by rows where row n is the multiset multiplicity kernel (MMK) of the multiset of prime indices of n.
1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 1, 5, 1, 2, 6, 1, 1, 2, 2, 1, 7, 1, 2, 8, 1, 3, 2, 2, 1, 1, 9, 1, 2, 3, 1, 1, 2, 1, 4, 10, 1, 1, 1, 11, 1, 2, 2, 1, 1, 3, 3, 1, 1, 12, 1, 1, 2, 2, 1, 3, 13, 1, 1, 1, 14, 1, 5, 2, 3, 1, 1, 15, 1, 2, 4, 1, 3, 2, 2, 1, 6, 16, 1, 2
Offset: 1
Examples
The first 45 rows: 1: {} 16: {1} 31: {11} 2: {1} 17: {7} 32: {1} 3: {2} 18: {1,2} 33: {2,2} 4: {1} 19: {8} 34: {1,1} 5: {3} 20: {1,3} 35: {3,3} 6: {1,1} 21: {2,2} 36: {1,1} 7: {4} 22: {1,1} 37: {12} 8: {1} 23: {9} 38: {1,1} 9: {2} 24: {1,2} 39: {2,2} 10: {1,1} 25: {3} 40: {1,3} 11: {5} 26: {1,1} 41: {13} 12: {1,2} 27: {2} 42: {1,1,1} 13: {6} 28: {1,4} 43: {14} 14: {1,1} 29: {10} 44: {1,5} 15: {2,2} 30: {1,1,1} 45: {2,3}
Crossrefs
Indices of empty and singleton rows are A000961.
Row lengths are A001221.
Row minima are A055396.
Rows have A071625 distinct elements.
Indices of constant rows are A072774.
Indices of strict rows are A130091.
Rows have Heinz numbers A367580.
Row sums are A367581.
Index of first row with Heinz number n is A367584.
Sorted row indices of first appearances are A367585.
Indices of rows of the form {1,1,...} are A367586.
A007947 gives squarefree kernel.
A367582 counts partitions by sum of multiset multiplicity kernel.
Programs
-
Mathematica
mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]]; Table[mmk[PrimePi/@Join@@ConstantArray@@@If[n==1, {},FactorInteger[n]]], {n,100}]
Formula
For all positive integers n and k, row n^k is the same as row n.
Comments