A367585 Numbers k whose multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) is different from that of all positive integers less than k.
1, 2, 3, 5, 6, 7, 11, 12, 13, 15, 17, 19, 20, 23, 28, 29, 30, 31, 35, 37, 41, 43, 44, 45, 47, 52, 53, 59, 60, 61, 63, 67, 68, 71, 73, 76, 77, 79, 83, 89, 90, 92, 97, 99, 101, 103, 105, 107, 109, 113, 116, 117, 124, 127, 131, 137, 139, 140, 143, 148, 149, 150
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 28: {1,1,4} 60: {1,1,2,3} 2: {1} 29: {10} 61: {18} 3: {2} 30: {1,2,3} 63: {2,2,4} 5: {3} 31: {11} 67: {19} 6: {1,2} 35: {3,4} 68: {1,1,7} 7: {4} 37: {12} 71: {20} 11: {5} 41: {13} 73: {21} 12: {1,1,2} 43: {14} 76: {1,1,8} 13: {6} 44: {1,1,5} 77: {4,5} 15: {2,3} 45: {2,2,3} 79: {22} 17: {7} 47: {15} 83: {23} 19: {8} 52: {1,1,6} 89: {24} 20: {1,1,3} 53: {16} 90: {1,2,2,3} 23: {9} 59: {17} 92: {1,1,9}
Crossrefs
All terms are rootless A007916 (have no positive integer roots).
Positions of squarefree terms appear to be A073485.
Contains no nonprime prime powers A246547.
Sorted positions of first appearances in A367580.
Sorted version of A367584.
Complement of A367768.
A007947 gives squarefree kernel.
A071625 counts distinct prime exponents.
Programs
-
Mathematica
nn=100; mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]]; qq=Table[Times@@mmk[Join@@ConstantArray@@@FactorInteger[n]], {n,nn}]; Select[Range[nn], FreeQ[Take[qq,#-1], qq[[#]]]&]
Comments