A367594 Number of permutations of [n] whose cycle maxima sum to k, where k is chosen so as to maximize this number.
1, 1, 1, 2, 7, 27, 142, 834, 5962, 46788, 426708, 4198632, 46516800, 551415936, 7197404976, 99712618560, 1500173940960, 23786129681280, 405087689727360, 7237524061198080, 137652562628778240, 2735042530132523520, 57482464477451489280, 1257272784581092070400
Offset: 0
Keywords
Examples
a(4) = 7 = A143947(4,7): (123)(4), (132)(4), (124)(3), (142)(3), (13)(24), (14)(23), (1)(2)(34). a(5) = 27 = A143947(5,9): (1234)(5), (1243)(5), (1324)(5), (1342)(5), (1423)(5), (1432)(5), (1235)(4), (1253)(4), (1325)(4), (1352)(4), (1523)(4), (1532)(4), (124)(35), (142)(35), (125)(34), (152)(34), (134)(25), (143)(25), (135)(24), (153)(24), (14)(235), (14)(253), (15)(234), (15)(243), (1)(23)(45), (1)(245)(3), (1)(254)(3).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Wikipedia, Permutation
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, expand(b(n-1)*(t-n+x^n))) end: a:= n-> max(coeffs(subs(t=n, b(n)))): seq(a(n), n=0..23);
-
Mathematica
a[n_] := If[n == 0, 1, Module[{t}, CoefficientList[Product[n-k+t^k, {k, 1, n-1}]*t^(n-1), t] // Max]]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 03 2024 *)
Formula
a(n) = A143947(n,2n-1) for n>=1, a(0) = 1.