cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367698 The smallest divisor d of n such that n/d is an exponentially odious number (A270428).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2023

Keywords

Comments

First differs from A055229 at n = 64.

Crossrefs

Programs

  • Mathematica
    maxOdious[e_] := Module[{k = e}, While[EvenQ[DigitCount[k, 2, 1]], k--]; k]; f[p_, e_] := p^(e - maxOdious[e]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(k = n); while(!(hammingweight(k)%2), k--); n-k; }
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2])); }

Formula

a(n) = n/A366905(n).
Multiplicative with a(p^e) = p^(e-s(e)), where s(e) = max({k=1..e, k odious}).
a(n) >= 1, with equality if and only if n is an exponentially odious number (A270428).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.25857819194624249136..., where f(x) = (1-x)*(1+Sum_{k>=1} x^s(k)), s(k) is defined above for k >= 1, and s(0) = 0.