A367705 Coefficients of expansion of (1 + 5*x + 11*x^2 + 5*x^3 + 7*x^4 + x^5)/(1 - x^3)^2 in powers of x.
1, 5, 11, 7, 17, 23, 13, 29, 35, 19, 41, 47, 25, 53, 59, 31, 65, 71, 37, 77, 83, 43, 89, 95, 49, 101, 107, 55, 113, 119, 61, 125, 131, 67, 137, 143, 73, 149, 155, 79, 161, 167, 85, 173, 179, 91, 185, 191, 97, 197, 203, 103, 209, 215, 109, 221, 227, 115, 233, 239
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
Programs
-
Mathematica
CoefficientList[Series[(1 + 5*x + 11*x^2 + 5*x^3 + 7*x^4 + x^5)/(1 - x^3)^2, {x, 0, 60}], x] (* or *) LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 5, 11, 7, 17, 23}, 60] (* Amiram Eldar, Nov 28 2023 *)
Formula
a(n) = 2*a(n-3) - a(n-6) for n >= 6.
a(3*n) = 6*n+1, a(3*n+1) = 12*n+5, a(3*n+2) = 12*n+11.
Sum_{n>=0} (-1)^n/a(n) = ((2+sqrt(2))*Pi + sqrt(3)*log(7+4*sqrt(3)) + sqrt(6)*log(5-2*sqrt(6)))/12. - Amiram Eldar, Nov 28 2023
Comments