A367706 Number of degree 5 vertices in the n-Menger sponge graph.
0, 24, 1272, 27192, 537720, 10638648, 211640184, 4223114808, 84382898808, 1687017131832, 33735198879096, 674662776506424, 13492925768472696, 269855876817045816, 5397096426544159608, 107941759648376656440, 2158833841895083390584, 43176666029284877542200, 863533234116651651590520
Offset: 1
Examples
The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices. Thus a(1) = 0.
Links
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Index entries for linear recurrences with constant coefficients, signature (32,-275,724,-480).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{32,-275,724,-480},{0,24,1272,27192},25] (* Paolo Xausa, Nov 29 2023 *)
-
Python
def A367706(n): return ((7*5**n<<(n<<1)+1)+(17<<(3*n+1))-(3**(n+3)<<5))//85+24 # Chai Wah Wu, Nov 28 2023
Formula
a(n) = (14/85)*20^n + (2/5)*8^n - (864/85)*3^n + 24.
a(n) = 20*a(n-1) - (3/5)*8^n + (288/5)*3^n - 456.
G.f.: 24*x^2*(1 + 21*x - 288*x^2)/((1 - x)*(1- 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 28 2023
Comments