A367752 Number of shapes of labeled rooted hypertrees with n vertices.
1, 1, 4, 29, 256, 3007, 42932, 721121, 13982563, 306967231, 7527903208, 203977383469, 6051630040496, 195111205542541, 6792697846367791, 253966747582533681, 10149075292428481965, 431705938073882999275, 19474660918369182445456, 928660364396786865580881
Offset: 1
Keywords
Examples
For n = 3 the a(3) = 4 solutions are: - the corolla with a black root which have 3 white children, - and the 3 possible labeling of the hypertree with a white root which have 2 white children connected to it via a hyperedge.
Programs
-
PARI
my(x='x+O('x^30)); Vec(serlaplace(serreverse(log(1+x)*exp(-exp(x)+x+1)))) \\ Michel Marcus, Nov 30 2023
-
SageMath
R.
=PowerSeriesRing(QQ);(ln(1+t)*exp(-exp(t)+t+1)).reverse().egf_to_ogf().list()[1:]
Formula
E.g.f.: series reversion of log(1+x)*exp(-exp(x)+x+1).
Comments