cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367780 a(n) is the sum of the squares of the area under Dyck paths of length 2*n.

Original entry on oeis.org

0, 1, 20, 189, 1356, 8426, 47944, 257085, 1321036, 6574190, 31911320, 151841906, 710828600, 3282862644, 14988894992, 67769474077, 303823057164, 1352059744070, 5977826290936, 26277396651558, 114916296684008, 500229317398156, 2168403190878960, 9364025672275634
Offset: 0

Views

Author

AJ Bu, Nov 29 2023

Keywords

Crossrefs

Programs

  • Maple
    G:= ((-1 + sqrt(-4*x^2 + 1))*(40*x^4 + 14*sqrt(-4*x^2 + 1)*x^2 - 14*x^2 - sqrt(-4*x^2 + 1) + 1))/( 4*(4*x^2 - 1)^3*x^2):  Gser:=series(G, x=0, 41): seq(coeff(Gser, x, 2*n), n=0..19);
  • Mathematica
    G[x_] := ((-1 + Sqrt[-4*x^2 + 1]) * (40*x^4 + 14*Sqrt[-4*x^2 + 1]*x^2 - 14*x^2 - Sqrt[-4*x^2 + 1] + 1)) /  (4*(4*x^2 - 1)^3*x^2); Gser = Series[G[x], {x, 0, 46}]; Table[Coefficient[Gser, x, 2*n], {n, 0, 23}] (* James C. McMahon, Dec 10 2023 *)

Formula

G.f.: ((-1 + sqrt(-4*x^2 + 1))*(40*x^4 + 14*sqrt(-4*x^2 + 1)*x^2 - 14*x^2 - sqrt(-4*x^2 + 1) + 1))/( 4*(4*x^2 - 1)^3*x^2).
D-finite with recurrence -(n+1)*(133*n-262)*a(n) +4*(564*n^2-1229*n+262)*a(n-1) +4*(-2916*n^2+7294*n-2765)*a(n-2) +16*(596*n-553)*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jan 11 2024