cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A367637 G.f. A(x) satisfies A(x) = 1 / (1 - x * A(x^6)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 34, 43, 55, 71, 92, 119, 153, 196, 251, 322, 414, 533, 686, 882, 1133, 1455, 1869, 2402, 3088, 3970, 5103, 6558, 8427, 10829, 13917, 17888, 22992, 29551, 37979, 48809, 62727, 80617, 103612, 133167
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2023

Keywords

Comments

This sequence is different from A005708.

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\6, v[j+1]*v[i-6*j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/6)} a(k) * a(n-1-6*k).

A367794 G.f. A(x) satisfies A(x) = 1 / (1 - x * A(x^4)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 95, 131, 181, 250, 346, 478, 660, 911, 1259, 1740, 2404, 3320, 4586, 6336, 8754, 12093, 16705, 23077, 31881, 44043, 60844, 84053, 116116, 160410, 221602, 306136, 422916, 584242, 807110, 1114996
Offset: 0

Views

Author

Seiichi Manyama, Nov 30 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\4, v[j+1]*v[i-4*j])); v;
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A367794(n): return sum(A367794(k)*A367794(n-1-(k<<2)) for k in range(n+3>>2)) if n else 1 # Chai Wah Wu, Nov 30 2023

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} a(k) * a(n-1-4*k).
Showing 1-2 of 2 results.