cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367803 Exponentially evil squares.

Original entry on oeis.org

1, 64, 729, 1024, 4096, 15625, 46656, 59049, 117649, 262144, 531441, 746496, 1000000, 1048576, 1771561, 2985984, 3779136, 4826809, 7529536, 9765625, 11390625, 16000000, 16777216, 24137569, 34012224, 47045881, 60466176, 64000000, 85766121, 113379904, 120472576, 148035889
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2023

Keywords

Comments

Numbers whose prime factorization contains only exponents that are even evil numbers (A125592).
Also, squares of exponentially evil numbers (A262675).
Also, numbers with an equal number of exponentially odious and exponentially evil divisors, i.e., numbers k such that A366901(k) = A366902(k). - Amiram Eldar, Feb 26 2024

Crossrefs

Intersection of A000290 and A262675.

Programs

  • Mathematica
    evilQ[n_] := EvenQ[DigitCount[n, 2, 1]]; Select[Range[10^4]^2, #== 1 || AllTrue[FactorInteger[#][[;;, 2]], evilQ] &]
  • PARI
    isexpevil(n) = {my(f = factor(n)); for (i = 1, #f~, if(hammingweight(f[i, 2])%2, return (0))); 1;}
    is(n) = issquare(n) && isexpevil(n);

Formula

a(n) = A262675(n)^2.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=1} 1/p^A125592(k)) = Product_{p prime} f(1/p) = 1.01833932269003592136..., where f(x) = (2/(1-x^2) + Product_{k>=0} (1 - x^(2^k)) + Product_{k>=0} (1 - (-x)^(2^k)))/4.