cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A368338 Number T(n,k) of partitions of [n] whose sum of block maxima minus block minima gives k, triangle T(n,k), n>=0, 0<=k<=A002620(n), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 3, 5, 4, 2, 1, 4, 9, 12, 12, 8, 6, 1, 5, 14, 25, 34, 36, 36, 28, 18, 6, 1, 6, 20, 44, 74, 100, 122, 132, 132, 108, 78, 36, 24, 1, 7, 27, 70, 139, 224, 318, 408, 490, 534, 536, 468, 378, 258, 162, 96, 24, 1, 8, 35, 104, 237, 440, 710, 1032, 1398, 1764, 2094, 2296, 2364, 2220, 1962, 1584, 1242, 816, 528, 192, 120
Offset: 0

Views

Author

Alois P. Heinz, Dec 21 2023

Keywords

Examples

			T(4,0) = 1: 1|2|3|4.
T(4,1) = 3: 12|3|4, 1|23|4, 1|2|34.
T(4,2) = 5: 123|4, 12|34, 13|2|4, 1|234, 1|24|3.
T(4,3) = 4: 1234, 124|3, 134|2, 14|2|3.
T(4,4) = 2: 13|24, 14|23.
T(5,5) = 8: 124|35, 125|34, 13|245, 13|25|4, 145|23, 15|23|4, 14|2|35, 15|2|34.
T(5,6) = 6: 134|25, 135|24, 14|235, 15|234, 14|25|3, 15|24|3.
T(6,9) = 6: 14|25|36, 14|26|35, 15|24|36, 16|24|35, 15|26|34, 16|25|34.
Triangle T(n,k) begins:
  1;
  1;
  1, 1;
  1, 2,  2;
  1, 3,  5,  4,  2;
  1, 4,  9, 12, 12,   8,   6;
  1, 5, 14, 25, 34,  36,  36,  28,  18,   6;
  1, 6, 20, 44, 74, 100, 122, 132, 132, 108, 78, 36, 24;
  ...
		

Crossrefs

Columns k=0..3 give: A000012, A001477(n-1), A000096(n-2), A000297(n-4).
Row sums give A000110.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, x^add(-i, i=m), add(
          b(n-1, subs(j=n, m)), j=m)+expand(b(n-1, {m[], n})*x^n))
        end:
    T:= (n, k)-> coeff(b(n, {}), x, k):
    seq(seq(T(n, k), k=0..(h-> h*(n-h))(iquo(n, 2))), n=0..10);
    # second Maple program:
    b:= proc(n, s) option remember; `if`(n=0, 1, (k-> `if`(n>k,
          b(n-1, s)*(k+1), 0)+`if`(n>k+1, b(n-1, {s[], n}), 0)+
          add(expand(x^(h-n)*b(n-1, s minus {h})), h=s))(nops(s)))
        end:
    T:= (n, k)-> coeff(b(n, {}), x, k):
    seq(seq(T(n, k), k=0..floor(n^2/4)), n=0..10);

Formula

Sum_{k=0..A002620(n)} k * T(n,k) = A367850(n).
T(n,A002620(n)) = A081123(n+1).
Showing 1-1 of 1 results.