cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367857 a(n) is the smallest base b such that (b+1)^n in base b is a palindrome.

Original entry on oeis.org

2, 2, 2, 7, 11, 21, 36, 71, 127, 253, 463, 925, 1717, 3433, 6436, 12871, 24311, 48621, 92379, 184757, 352717, 705433, 1352079, 2704157, 5200301, 10400601, 20058301, 40116601, 77558761, 155117521, 300540196, 601080391, 1166803111
Offset: 1

Views

Author

James Carruthers, Dec 03 2023

Keywords

Comments

Empirically the same as A001405(n)+1 apart from a(2) where 11^10=1001 in base 2 (3^2=9 in base 10) and a(3) where 11^11=11011 in base 2 (3^3=27 in base 10).

Examples

			For n=5 the minimum base required is 11, giving 11^5=15aa51 (12^5=248832 in base 10).
		

Crossrefs

Cf. A001405.

Programs

  • Mathematica
    a[n_] := Module[{b = 2, d},  While[(d = IntegerDigits[(b + 1)^n, b]) != Reverse[d],   b++  ];  b] ;
    Table[a[n],{n,33}] (* James C. McMahon, Dec 13 2023 after PARI *)
  • PARI
    a(n) = my(b=2,d); while ((d=digits((b+1)^n, b)) != Vecrev(d), b++); b; \\ Michel Marcus, Dec 05 2023
  • Python
    from itertools import count
    from sympy.ntheory.factor_ import digits
    def ispal(d): return d == d[::-1]
    def a(n): return next(b for b in count(2) if ispal(digits((b+1)**n, b)[1:]))
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Dec 04 2023
    

Formula

Conjecture: a(n) = binomial(n, floor(n/2))+1 for n>3.

Extensions

a(8)-a(33) from Michael S. Branicky, Dec 04 2023