A367858 Irregular triangle read by rows where row n is the multiset multiplicity cokernel (MMC) of the multiset of prime indices of n.
1, 2, 1, 3, 2, 2, 4, 1, 2, 3, 3, 5, 1, 2, 6, 4, 4, 3, 3, 1, 7, 1, 2, 8, 1, 3, 4, 4, 5, 5, 9, 1, 2, 3, 6, 6, 2, 1, 4, 10, 3, 3, 3, 11, 1, 5, 5, 7, 7, 4, 4, 2, 2, 12, 8, 8, 6, 6, 1, 3, 13, 4, 4, 4, 14, 1, 5, 2, 3, 9, 9, 15, 1, 2, 4, 1, 3, 7, 7, 1, 6, 16, 1, 2
Offset: 1
Examples
The first 45 rows: 1: {} 16: {1} 31: {11} 2: {1} 17: {7} 32: {1} 3: {2} 18: {1,2} 33: {5,5} 4: {1} 19: {8} 34: {7,7} 5: {3} 20: {1,3} 35: {4,4} 6: {2,2} 21: {4,4} 36: {2,2} 7: {4} 22: {5,5} 37: {12} 8: {1} 23: {9} 38: {8,8} 9: {2} 24: {1,2} 39: {6,6} 10: {3,3} 25: {3} 40: {1,3} 11: {5} 26: {6,6} 41: {13} 12: {1,2} 27: {2} 42: {4,4,4} 13: {6} 28: {1,4} 43: {14} 14: {4,4} 29: {10} 44: {1,5} 15: {3,3} 30: {3,3,3} 45: {2,3}
Crossrefs
Indices of empty and singleton rows are A000961.
Row lengths are A001221.
Row maxima are A061395.
Rows have A071625 distinct elements.
Indices of constant rows are A072774.
Indices of strict rows are A130091.
Row minima are A367587.
Rows have Heinz numbers A367859.
Row sums are A367860.
A007947 gives squarefree kernel.
Programs
-
Mathematica
mmc[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Max@@Select[q,Count[q,#]==i&], {i,mts}]]]; Table[mmc[PrimePi /@ Join@@ConstantArray@@@If[n==1, {},FactorInteger[n]]], {n,100}]
Formula
For all positive integers n and k, row n^k is the same as row n.
Comments