A367863 Number of n-vertex labeled simple graphs with n edges and no isolated vertices.
1, 0, 0, 1, 15, 222, 3760, 73755, 1657845, 42143500, 1197163134, 37613828070, 1295741321875, 48577055308320, 1969293264235635, 85852853154670693, 4005625283891276535, 199166987259400191480, 10513996906985414443720, 587316057411626070658200, 34612299496604684775762261
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(4) = 15 graphs: {{1,2},{1,3},{1,4},{2,3}} {{1,2},{1,3},{2,4},{3,4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Length[#]==n&]],{n,0,5}]
-
PARI
a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(binomial(k,2), n)) \\ Andrew Howroyd, Dec 29 2023
Formula
Binomial transform is A367862.
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(binomial(k,2), n). - Andrew Howroyd, Dec 29 2023
Extensions
Terms a(8) and beyond from Andrew Howroyd, Dec 29 2023