A367869 Number of labeled simple graphs covering n vertices and satisfying a strict version of the axiom of choice.
1, 0, 1, 4, 34, 387, 5596, 97149, 1959938, 44956945, 1154208544, 32772977715, 1019467710328, 34473686833527, 1259038828370402, 49388615245426933, 2070991708598960524, 92445181295983865757, 4376733266230674345874, 219058079619119072854095, 11556990682657196214302036
Offset: 0
Keywords
Examples
The a(3) = 4 graphs: {{1,2},{1,3}} {{1,2},{2,3}} {{1,3},{2,3}} {{1,2},{1,3},{2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Select[Tuples[#], UnsameQ@@#&]!={}&]],{n,0,5}]
-
PARI
seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(sqrt(1/(1-t))*exp(t/2 - 3*t^2/4 - x)))} \\ Andrew Howroyd, Dec 30 2023
Formula
E.g.f.: exp(B(x) - x - 1) where B(x) is the e.g.f. of A129271. - Andrew Howroyd, Dec 30 2023
Extensions
Terms a(7) and beyond from Andrew Howroyd, Dec 30 2023
Comments