A367900 a(n) is the greatest prime q such that A367798(n)^2 is the sum of q and its reversal.
2, 83, 81131, 894500063, 88990607813, 8499228209501, 8597793891803, 800072140300001, 859981720058603, 899969843983163, 82943190509220401, 86999838571212401, 88290616680100001, 89991996902408171, 83909667566050103, 89690298128004023, 89919974791600043, 8069990701280128001, 8299959944574088001
Offset: 1
Examples
a(4) = 894500063 because A367798(3) = 35419 and 35419^2 = 1254505561 = 894500063 + 360005498 and 894500063 is the greatest prime that works.
Programs
-
Maple
f:= proc(n) local y, c, d, dp, i, delta, m; y:= convert(n^2, base, 10); d:= nops(y); if d::even then if y[-1] <> 1 then return false fi; dp:= d-1; y:= y[1..-2]; c[dp]:= 1; else dp:= d; c[dp]:= 0; fi; c[0]:= 0; for i from 1 to floor(dp/2) do delta:= y[i] - y[dp+1-i] - c[i-1] - 10*c[dp+1-i]; if delta = 0 then c[dp-i]:= 0; c[i]:= 0; elif delta = -1 then c[dp-i]:= 1; c[i]:= 0; elif delta = -10 then c[dp-i]:= 0 ; c[i]:= 1; elif delta = -11 then c[dp-i]:= 1; c[i]:= 1; else return false fi; if y[i] + 10*c[i] - c[i-1] < 0 or (i=1 and y[i]+10*c[i]-c[i-1]=1) then return false fi; od; m:= (dp+1)/2; delta:= y[m] + 10*c[m] - c[m-1]; if not member(delta, [seq(i, i=0..18, 2)]) then return false fi; [seq(y[i]+ 10*c[i]-c[i-1], i=1..m)] end proc: g:= proc(L) local T, d, t, p, x, i; uses combinat; d:= nops(L); T:= cartprod([select(t -> t[1]::odd, [seq([L[1]-x, x], x=min(L[1], 9)..max(1, L[1]-9),-1)]), seq([seq([L[i]-x, x], x=min(9, L[i])..max(0, L[i]-9),-1)], i=2..d-1)]); while not T[finished] do t:= T[nextvalue](); p:= add(t[i][1]*10^(i-1), i=1..d-1) + L[-1]/2 * 10^(d-1) + add(t[i][2]*10^(2*d-i-1), i=1..d-1); if isprime(p) then return p fi; od; -1 end proc: p:= 2, 11: Q:= 83: while p < 10^10 do p:= nextprime(p); d:= 1+ilog10(p^2); if d::even and p^2 >= 2*10^(d-1) then p:= nextprime(floor(10^(d/2))); fi; v:= f(p); if v = false then next fi; q:= g(v); if q = -1 then next fi; Q:= Q, q; od: Q;
Comments