A367905 Number of ways to choose a sequence of different binary indices, one of each binary index of n.
1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 2, 1, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 2, 1, 1, 3, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 1, 4, 1, 1, 0, 2, 1, 1, 0, 2, 0, 0, 0, 4, 1, 2, 0, 3, 0, 0, 0
Offset: 0
Examples
352 has binary indices of binary indices {{2,3},{1,2,3},{1,4}}, and there are six possible choices (2,1,4), (2,3,1), (2,3,4), (3,1,4), (3,2,1), (3,2,4), so a(352) = 6.
Links
- John Tyler Rascoe, Table of n, a(n) for n = 0..16384
- Wikipedia, Axiom of choice.
Crossrefs
Positions of positive terms are A367906.
Positions of zeros are A367907.
Positions of ones are A367908.
Positions of terms > 1 are A367909.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1]; Table[Length[Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]],{n,0,100}]
-
Python
from itertools import count, islice, product def bin_i(n): #binary indices return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']) def a_gen(): #generator of terms for n in count(0): c = 0 for j in list(product(*[bin_i(k) for k in bin_i(n)])): if len(set(j)) == len(j): c += 1 yield c A367905_list = list(islice(a_gen(), 90)) # John Tyler Rascoe, May 22 2024
Comments