A367907 Numbers n such that it is not possible to choose a different binary index of each binary index of n.
7, 15, 23, 25, 27, 29, 30, 31, 39, 42, 43, 45, 46, 47, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 71, 75, 77, 78, 79, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 99, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 1
Examples
The set-system {{1},{2},{1,2},{1,3}} with BII-number 23 has choices (1,2,1,1), (1,2,1,3), (1,2,2,1), (1,2,2,3), but none of these has all different elements, so 23 is in the sequence. The terms together with the corresponding set-systems begin: 7: {{1},{2},{1,2}} 15: {{1},{2},{1,2},{3}} 23: {{1},{2},{1,2},{1,3}} 25: {{1},{3},{1,3}} 27: {{1},{2},{3},{1,3}} 29: {{1},{1,2},{3},{1,3}} 30: {{2},{1,2},{3},{1,3}} 31: {{1},{2},{1,2},{3},{1,3}} 39: {{1},{2},{1,2},{2,3}} 42: {{2},{3},{2,3}} 43: {{1},{2},{3},{2,3}} 45: {{1},{1,2},{3},{2,3}} 46: {{2},{1,2},{3},{2,3}} 47: {{1},{2},{1,2},{3},{2,3}} 51: {{1},{2},{1,3},{2,3}}
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..10000
- Wikipedia, Axiom of choice.
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[100], Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]=={}&]
-
Python
from itertools import count, islice, product def bin_i(n): #binary indices return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']) def a_gen(): #generator of terms for n in count(1): p = list(product(*[bin_i(k) for k in bin_i(n)])) x = len(p) for j in range(x): if len(set(p[j])) == len(p[j]): break if j+1 == x: yield(n) A367907_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Feb 10 2024
Comments