cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A367958 a(n) = Product_{i=1..n, j=1..n} (i + 5*j).

Original entry on oeis.org

1, 6, 5544, 2822916096, 1723467782592331776, 2210440498434925488635904000000, 9234659938893939743399592700454853672960000000, 180150216814109052335771891722360520401032374209013927116800000000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 06 2023

Keywords

Comments

In general, for d>0, Product_{i=1..n, j=1..n} (i + d*j) ~ A^(1/d) * (Product_{j=1..d} Gamma(j/d)^(j/d)) * (d+1)^((d/2 + 1 + 1/(2*d))*n*(n+1) + (d+1)^2/(12*d) + 1/12) * n^(n^2 - d/12 - 1/4 - 1/(12*d)) / ((2*Pi)^((d+1)/4) * exp(3*n^2/2 + 1/(12*d)) * d^((n*(d*n + (d+1)))/2 - 1/(12*d))), where A = A074962 is the Glaisher-Kinkelin constant.
Equivalently, for d>0, Product_{i=1..n, j=1..n} (i + d*j) ~ A^d * (Product_{j=1..d} BarnesG(j/d)) * (2*Pi)^((d-3)/4) * (d+1)^((d + (d+1)^2*(6*n*(n+1) + 1)) / (12*d)) * n^(n^2 - 1/4 - 1/(12*d) - d/12) / (d^((n+1)*(d*n + 1)/2) * exp(3*n^2/2 + d/12)).

Crossrefs

Cf. A079478 (d=1), A324402 (d=2), A367956 (d=3), A367957 (d=4).

Programs

  • Maple
    a:= n-> mul(mul(i+5*j, i=1..n), j=1..n):
    seq(a(n), n=0..8);  # Alois P. Heinz, Dec 06 2023
  • Mathematica
    Table[Product[i + 5*j, {i, 1, n}, {j, 1, n}], {n, 0, 10}]

Formula

a(n) ~ A^(1/5) * (1 + sqrt(5))^(1/10) * 2^(18*n*(n+1)/5 + 29/60) * 3^(18*n*(n+1)/5 + 41/60) * n^(n^2 - 41/60) / (Pi^(1/10) * Gamma(1/5)^(3/5) * Gamma(2/5)^(1/5) * 5^(n*(5*n+6)/2 + 1/3) * exp(3*n^2/2 + 1/60)), where A = A074962 is the Glaisher-Kinkelin constant.

A367941 a(n) = Product_{i=1..n, j=1..n} (i^2 + 2*j^2).

Original entry on oeis.org

1, 3, 1944, 4102777008, 140890630179993255936, 247470977313135626800897828778803200, 54132901224855040835735917614114353691165557521593139200
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[i^2+2*j^2, {i, 1, n}, {j, 1, n}], {n, 0, 8}]

Formula

a(n) ~ c * n^(2*n^2 - 1/2) * 3^(n*(n+1)) * 2^(-n/2) * exp(n*(n+1)*(Pi - arctan(sqrt(2))) / sqrt(2) - 3*n^2) , where c = 0.4690673220228472212446336926899602910226601891141458824921925169726804439...

A367942 a(n) = Product_{i=1..n, j=1..n} (i^2 + 3*j^2).

Original entry on oeis.org

1, 4, 5824, 45861064704, 9751658280030585225216, 176005320076923781520069562958715289600, 656508955366282248103393001602851493819854909361664242483200
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[i^2+3*j^2, {i, 1, n}, {j, 1, n}], {n, 0, 8}]

Formula

a(n) ~ c * n^(2*n^2 - 1/2) * 4^(n*(n+1)) * 3^(-n/2) * exp(5*Pi*n*(n+1)/(6*sqrt(3)) - 3*n^2), where c = 0.4612030005343304845802441101292774353695846313857765074861837886133930626...

A367943 a(n) = Product_{i=1..n, j=1..n} (i^2 + 4*j^2).

Original entry on oeis.org

1, 5, 13600, 294372000000, 252880261890048000000000, 27099784799070466617992871936000000000000, 882065676199020188908312950703217787436793856000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[i^2+4*j^2, {i, 1, n}, {j, 1, n}], {n, 0, 8}]

Formula

a(n) ~ c * n^(2*n^2 - 1/2) * 5^(n*(n+1)) * 2^(-n) * exp(n*(n+1)*(2*Pi - 3*arctan(2))/2 - 3*n^2) , where c = 0.4523180383519335764034720087114905921141637339852374451758854101884791581...
Showing 1-4 of 4 results.