A367958 a(n) = Product_{i=1..n, j=1..n} (i + 5*j).
1, 6, 5544, 2822916096, 1723467782592331776, 2210440498434925488635904000000, 9234659938893939743399592700454853672960000000, 180150216814109052335771891722360520401032374209013927116800000000
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
a:= n-> mul(mul(i+5*j, i=1..n), j=1..n): seq(a(n), n=0..8); # Alois P. Heinz, Dec 06 2023
-
Mathematica
Table[Product[i + 5*j, {i, 1, n}, {j, 1, n}], {n, 0, 10}]
Formula
a(n) ~ A^(1/5) * (1 + sqrt(5))^(1/10) * 2^(18*n*(n+1)/5 + 29/60) * 3^(18*n*(n+1)/5 + 41/60) * n^(n^2 - 41/60) / (Pi^(1/10) * Gamma(1/5)^(3/5) * Gamma(2/5)^(1/5) * 5^(n*(5*n+6)/2 + 1/3) * exp(3*n^2/2 + 1/60)), where A = A074962 is the Glaisher-Kinkelin constant.
Comments