cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367965 a(n) = (1/8)*(4*n^2 + 6*n + (-1)^n*(2*n*(n + 1) - 1) + 1).

Original entry on oeis.org

0, 1, 5, 4, 16, 9, 33, 16, 56, 25, 85, 36, 120, 49, 161, 64, 208, 81, 261, 100, 320, 121, 385, 144, 456, 169, 533, 196, 616, 225, 705, 256, 800, 289, 901, 324, 1008, 361, 1121, 400, 1240, 441, 1365, 484, 1496, 529, 1633, 576, 1776, 625, 1925, 676, 2080, 729, 2241, 784
Offset: 0

Views

Author

Peter Luschny, Dec 07 2023

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (1/8)*(4*n^2 + 6*n + (-1)^n*(2*n*(n + 1) - 1) + 1):
    seq(a(n), n = 0..55);
  • Mathematica
    LinearRecurrence[{0,3,0,-3,0,1},{0,1,5,4,16,9},100] (* Paolo Xausa, Dec 07 2023 *)

Formula

a(n) = Sum_{k=0..n} (-1)^(n - k) * A367964(n, k).
a(2*n) = n*(3*n+2) = A045944(n).
a(2*n-1) = n^2 = A000290(n).
G.f.: x*(1 + 5*x + x^2 + x^3)/((1 - x)^3*(1 + x)^3). - Stefano Spezia, Dec 07 2023
Sum_{n>=1} 1/a(n) = Pi^2/6 + Pi/(4*sqrt(3)) - 3*(log(3)-1)/4. - Amiram Eldar, Dec 06 2024