cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367967 a(n) = 3/4*(3^(n + 1) - 2*n - 4*n^2 - 3).

Original entry on oeis.org

0, 0, 3, 27, 126, 462, 1521, 4761, 14556, 44028, 132543, 398199, 1195290, 3586698, 10761069, 32284341, 96854328, 290564472, 871695099, 2615087187, 7845263670, 23535793350, 70607382633, 211822150737, 635466455316, 1906399369332, 5719198111671, 17157594338991
Offset: 0

Views

Author

Eric W. Weisstein, Dec 06 2023

Keywords

Comments

Number of 5-cycles in the n-Dorogovtsev-Goltsev-Mendes graph (using the convention that DGM(0) = P_2).

Crossrefs

Cf. A003462(n) (3-cycles), A290764(n-1) (4-cycles), A367968(n) (6-cycles).

Programs

  • Mathematica
    Table[3/4 (3^(n + 1) - 2 n - 4 n^2 - 3), {n, 0, 20}]
    LinearRecurrence[{6, -12, 10, -3}, {0, 0, 3, 27}, 20]
    CoefficientList[Series[3 x^2 (1 + 3 x)/((-1 + x)^3 (-1 + 3 x)), {x, 0, 20}], x]

Formula

a(n) = 3/4*(3^(n + 1) - 2*n - 4*n^2 - 3).
a(n) = 6*a(n-1) - 12*a(n-2) + 10*a(n-3) - 3*a(n-4).
G.f.: 3*x^2*(1+3*x)/((-1+x)^3*(-1+3*x)).