cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A384554 The sum of the infinitary divisors of n that are cubefree.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 7, 10, 18, 12, 20, 14, 24, 24, 1, 18, 30, 20, 30, 32, 36, 24, 28, 26, 42, 13, 40, 30, 72, 32, 3, 48, 54, 48, 50, 38, 60, 56, 42, 42, 96, 44, 60, 60, 72, 48, 4, 50, 78, 72, 70, 54, 39, 72, 56, 80, 90, 60, 120, 62, 96, 80, 5, 84, 144, 68, 90
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2025

Keywords

Comments

The number of these divisors is A368883(n), and the largest of them is A384555(n).
The sum of the infinitary divisors of n that are squarefree (A005117) is A367991(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Switch[Mod[e, 4], 0, 1, 1, p+1, 2, p^2+1, 3, p^2+p+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; [1, p+1, p^2+1, p^2+p+1][e%4+1]);}
    
  • Python
    from math import prod
    from sympy import factorint
    def A384554(n): return prod((1,p+1,p**2+1,p*(p+1)+1)[e&3] for p,e in factorint(n).items()) # Chai Wah Wu, Jun 03 2025

Formula

Multiplicative with a(p^e) = 1 if e == 0 (mod 4), p + 1 if e == 1 (mod 4), p^2 + 1 if e == 2 (mod 4), and p^2 + p + 1 if e == 3 (mod 4).
a(n) <= A000203(n), with equality if and only if n is squarefree (A005117).
a(n) <= A049417(n), with equality if and only if n is cubefree (A004709).
Dirichlet g.f.: zeta(4*s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^s + 1/p^(2*s-2) + 1/p^(2*s) + 1/p^(3*s-1) + 1/p^(3*s-2) + 1/p^(3*s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(8) * Product_{p prime} (1 + 1/p^2 - 2/p^3 + 2/p^4 - 1/p^5 - 1/p^7) = 1.2351002232125595782019... .

A367990 Sum of the squarefree divisors of the largest unitary divisor of n that is a square.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 1, 6, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 3, 8, 6, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 6, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[EvenQ[e], p + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(!(f[i,2]%2), f[i,1]+1, 1));}

Formula

Multiplicative with a(p^e) = p + 1 if e is even and 1 otherwise.
a(n) = A048250(A350388(n)).
a(n) = A000203(A336643(n)).
a(n) = A048250(n)/A367991(n).
a(n) >= 1, with equality if and only if n is an exponentially odd number (A268335).
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-1)).
From Vaclav Kotesovec, Apr 20 2025: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * Product_{p prime} ((p^(2*s) - p) * (p^(2*s) + p^s + p) / ((p^s+1) * p^(3*s))).
Let f(s) = Product_{p prime} ((p^(2*s)-p) * (p^(2*s)+p^s+p) / ((p^s+1) * p^(3*s))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = A307868 = Product_{p prime} (1 - 2/(p*(p+1))) = 0.4716806136129978680752356330804820874259263820069868836357372554177321167...
f'(1) = f(1) * Sum_{p prime} (7*p + 5) * log(p) / ((p-1)*(p+1)*(p+2)) = f(1) * 3.0570993566532132522378281945383016697995408795919384628849894110222383828...
and gamma is the Euler-Mascheroni constant A001620. (End)

A380163 a(n) is the value of the Euler totient function when applied to the squarefree part of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 1, 4, 10, 2, 12, 6, 8, 1, 16, 1, 18, 4, 12, 10, 22, 2, 1, 12, 2, 6, 28, 8, 30, 1, 20, 16, 24, 1, 36, 18, 24, 4, 40, 12, 42, 10, 4, 22, 46, 2, 1, 1, 32, 12, 52, 2, 40, 6, 36, 28, 58, 8, 60, 30, 6, 1, 48, 20, 66, 16, 44, 24, 70, 1, 72, 36
Offset: 1

Views

Author

Amiram Eldar, Jan 14 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p-1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, f[i, 1]-1, 1));}

Formula

a(n) = A000010(A007913(n)).
a(n) >= 1, with equality if and only if n is in A028982.
a(n) <= A000010(n), with equality if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = p-1 if e is odd, and 1 otherwise.
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^s).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4) * Product_{p prime} (1 - 2/p^2 + 1/p^3) = 0.46350438981962928756...
Showing 1-3 of 3 results.