cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371370 E.g.f. satisfies A(x) = -log(1 - x/(1 - A(x))^2).

Original entry on oeis.org

0, 1, 5, 62, 1246, 34734, 1239708, 53958456, 2771832656, 164151829440, 11010949643640, 825134834757936, 68321156113803360, 6194283782068848816, 610322188305019432032, 64936303681095948453120, 7419917758371561069774336, 906217650382400588573066880
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(2*n+k-2)!/(2*n-1)! * Abs[StirlingS1[n,k]], {k,1,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 10 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(serreverse((1-x)^2*(1-exp(-x))))))
    
  • PARI
    a(n) = sum(k=1, n, (2*n+k-2)!/(2*n-1)!*abs(stirling(n, k, 1)));

Formula

E.g.f.: Series_Reversion( (1 - x)^2 * (1 - exp(-x)) ).
a(n) = Sum_{k=1..n} (2*n+k-2)!/(2*n-1)! * |Stirling1(n,k)|.
a(n) ~ LambertW(2*exp(3))^n * n^(n-1) / (sqrt(2*(1 + LambertW(2*exp(3)))) * (LambertW(2*exp(3)) - 2)^(3*n-1) * exp(n)). - Vaclav Kotesovec, Sep 10 2024

A371371 E.g.f. satisfies A(x) = exp(x/(1 - A(x))^2) - 1.

Original entry on oeis.org

0, 1, 5, 61, 1209, 33261, 1171933, 50363293, 2554659761, 149399423101, 9896519640981, 732401926901613, 59890184672573929, 5362586032967290765, 521831581416561627149, 54834132144912233219581, 6188110724712474697469025, 746431260858514472012500701
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(serreverse((1-x)^2*log(1+x)))))
    
  • PARI
    a(n) = sum(k=1, n, (2*n+k-2)!/(2*n-1)!*stirling(n, k, 2));

Formula

E.g.f.: Series_Reversion( (1 - x)^2 * log(1+x) ).
a(n) = Sum_{k=1..n} (2*n+k-2)!/(2*n-1)! * Stirling2(n,k).
a(n) ~ 2^(n-1) * LambertW(exp(1/2))^(2*n-1) * n^(n-1) / (sqrt(LambertW(exp(1/2)) + 1) * exp(n) * (2*LambertW(exp(1/2))-1)^(3*n-1)). - Vaclav Kotesovec, Mar 29 2024
Showing 1-2 of 2 results.