cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A368039 The product of exponents of prime factorization of the nonsquarefree numbers.

Original entry on oeis.org

2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 4, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 6, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 4, 3, 6, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 8, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 4, 3, 2, 3, 6, 4, 2, 6, 2, 2, 4, 2, 9, 2, 5, 4, 2
Offset: 1

Views

Author

Amiram Eldar, Dec 09 2023

Keywords

Comments

The terms of A005361 that are larger than 1, since A005361(k) = 1 if and only if k is squarefree (A005117).

Crossrefs

Programs

  • Mathematica
    Select[Table[Times @@ FactorInteger[n][[;;, 2]], {n, 1, 250}], # > 1 &]
  • PARI
    lista(kmax) = {my(p); for(k = 1, kmax, p = vecprod(factor(k)[, 2]); if(p > 1, print1(p, ", ")));}

Formula

a(n) = A005361(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = ((zeta(2)*zeta(3)/zeta(6)) - 1/zeta(2))/(1-1/zeta(2)) = (A082695 - A059956)/A229099 = 3.406686208821... .

A368040 The powerful part of the nonsquarefree numbers.

Original entry on oeis.org

4, 8, 9, 4, 16, 9, 4, 8, 25, 27, 4, 32, 36, 8, 4, 9, 16, 49, 25, 4, 27, 8, 4, 9, 64, 4, 72, 25, 4, 16, 81, 4, 8, 9, 4, 32, 49, 9, 100, 8, 108, 16, 4, 9, 8, 121, 4, 125, 9, 128, 4, 27, 8, 4, 144, 49, 4, 25, 8, 9, 4, 32, 81, 4, 8, 169, 9, 4, 25, 16, 36, 8, 4, 27
Offset: 1

Views

Author

Amiram Eldar, Dec 09 2023

Keywords

Comments

The terms of A057521 that are larger than 1, since A057521(k) = 1 if and only if k is squarefree (A005117).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e > 1, p^e, 1]; powPart[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[powPart, 200], # > 1 &]
  • PARI
    lista(kmax) = {my(p, f); for(k = 1, kmax, f = factor(k); p = prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); if(p > 1, print1(p, ", ")));}

Formula

a(n) = A057521(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = d/(3*(1-1/zeta(2))^(3/2)) = 4.778771..., and d = A328013.

A368541 The number of exponential divisors of the nonsquarefree numbers.

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 3
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2023

Keywords

Comments

The terms of A049419 that are larger than 1, since A049419(k) = 1 if and only if k is squarefree (A005117).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSigma[0, e]; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 200], # > 1 &]
  • PARI
    lista(kmax) = {my(p, f); for(k = 1, kmax, f = factor(k); p = prod(i=1, #f~, numdiv(f[i, 2])); if(p > 1, print1(p, ", ")));}

Formula

a(n) = A049419(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (A327837 - A059956)/A229099 = 2.53623753427906735929... .

A373058 The sum of the aliquot coreful divisors of the nonsquarefree numbers.

Original entry on oeis.org

2, 6, 3, 6, 14, 6, 10, 18, 5, 12, 14, 30, 36, 30, 22, 15, 42, 7, 10, 26, 24, 42, 30, 21, 62, 34, 96, 15, 38, 70, 39, 42, 66, 30, 46, 90, 14, 33, 80, 78, 126, 98, 58, 39, 90, 11, 62, 30, 42, 126, 66, 60, 102, 70, 216, 21, 74, 30, 114, 51, 78, 150, 78, 82, 126, 13
Offset: 1

Views

Author

Amiram Eldar, May 21 2024

Keywords

Comments

A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).
The positive terms of A336563: if k is a squarefree number (A005117) then the only coreful divisor of k is k itself, so k has no aliquot coreful divisors.
The number of the aliquot coreful divisors of the n-th nonsquarefree number is A368039(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; Select[Array[s, 300], # > 0 &]
  • PARI
    lista(kmax) = {my(f); for(k = 1, kmax, f = factor(k); if(!issquarefree(f), print1(prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - 1) - k, ", "))); }
    
  • Python
    from math import prod, isqrt
    from sympy import mobius, factorint
    def A373058(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return prod((p**(e+1)-1)//(p-1)-1 for p, e in factorint(m).items())-m # Chai Wah Wu, Jul 22 2024

Formula

a(n) = A336563(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (A065487 - 1)/(1-1/zeta(2))^2 = 1.50461493205911656114... .
Showing 1-4 of 4 results.