A368046 a(n) = ((n + 1)^2 * (5*n + 4)*n) / 12.
0, 3, 21, 76, 200, 435, 833, 1456, 2376, 3675, 5445, 7788, 10816, 14651, 19425, 25280, 32368, 40851, 50901, 62700, 76440, 92323, 110561, 131376, 155000, 181675, 211653, 245196, 282576, 324075, 369985, 420608, 476256, 537251
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A368045.
Programs
-
Mathematica
A368046[n_]:=((n+1)^2(5n+4)n)/12;Array[A368046,50,0] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,3,21,76,200},50] (* Paolo Xausa, Dec 10 2023 *)
Formula
a(n) = Sum_{k=0..n} A368045(k).
G.f.: x*(3 + 6*x + x^2)/(1 - x)^5. - Stefano Spezia, Dec 10 2023