A368051 Successive primes building the lexicographically earliest k X k 'Futility Squares' (see the Comment and Example sections for more explanations).
13, 31, 113, 101, 313, 1117, 1009, 1019, 7993, 11113, 10007, 10009, 10039, 37997, 111119, 100003, 100019, 100129, 101207, 939973, 1111151, 1000003, 1000033, 1000037, 1000099, 5033981, 1337911, 11111117, 10000019, 10000079, 10000103, 10000121, 10011163, 11702641, 79931311
Offset: 1
Examples
Here is the lexicographically earliest 3 X 3 'Futility Square': . 1 1 3 1 0 1 3 1 3 . We see that 113, 101, 313 and the diagonal 103 are distinct primes. Hereunder is the lexicographically earliest 6 X 6 'Futility Square': . 1 1 1 1 1 9 1 0 0 0 0 3 1 0 0 0 1 9 1 0 0 1 2 9 1 0 1 2 0 7 9 3 9 9 7 3 . We see that 111119, 100003, 100019, 100129, 101207, 939973 and the diagonal 100103 are distinct primes. The sequence is formed by the two horizontal primes of the 2 X 2 square [13, 31], then the three horizontal primes of the 3 X 3 square [113, 101, 313], then the four horizontal primes of the 4 X 4 square [1117, 1009, 1019, 7993], etc.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..5049 (through k=101; terms 1..44 from Michael S. Branicky, terms 45..1539 from David A. Corneth)
- Éric Angelini, Squaring Primes, Personal blog, December 2023.
- Michael S. Branicky, Python program
- David A. Corneth, PARI program
- Futility Closet, Squaring Words, Futility Closet, December 2023.
Programs
-
PARI
\\ See PARI link
-
Python
# See Python link
Extensions
a(28)-a(35) for k=8 from Michael S. Branicky, Dec 23 2023
Comments