A368077 Numbers k such that row k of Pascal's triangle mod 10 contains all the numbers 0 to 9.
47, 59, 89, 94, 117, 118, 119, 123, 147, 173, 189, 198, 214, 219, 221, 222, 223, 233, 237, 238, 239, 243, 244, 247, 248, 297, 298, 309, 313, 317, 318, 319, 323, 339, 344, 345, 346, 347, 348, 363, 366, 367, 368, 369, 373, 397, 398, 409, 413, 414, 417, 418, 421, 422, 423, 429, 433, 437, 438, 439
Offset: 1
Examples
a(3) = 89 is a term because binomial(89,15) = 38163061637050680 == 0 (mod 10), binomial(89,0) = 1 == 1 (mod 10), binomial(89,5) = 41507642 == 2 (mod 10), binomial(89,8) = 70625252863 == 3 (mod 10), binomial(89,3) = 113564 == 4 (mod 10), binomial(89,16) = 176504160071359395 == 5 (mod 10), binomial(89,2) = 3916 == 6 (mod 10), binomial(89,9) = 635627275767 == 7 (mod 10), binomial(89,6) = 581106988 == 8 (mod 10), and binomial(89,1) = 89 == 9 (mod 10).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A208280.
Programs
-
Maple
filter:= proc(n) local k,S; S:= {$0..9}: for k from 0 to n/2 do S:= S minus {(binomial(n,k) mod 10)}; if S = {} then return true fi od; false end proc: select(filter, [$1..1000]); # Robert Israel, Dec 10 2023
-
Python
from itertools import count, islice def A368077_gen(): # generator of terms a, b = [], set(range(10)) for i in count(0): c, d = 0, [] for k in a: d.append((c+k)%10) c = k a = d+[1] if b.issubset(set(a)): yield i A368077_list = list(islice(A368077_gen(),30)) # Chai Wah Wu, May 01 2025
Comments