A368078 Lexicographically earliest increasing sequence a(n) of products of 4 primes such that a(n) - a(n-1) and a(n) + a(n-1) are also products of 4 primes. The 4 primes are counted with multiplicity.
16, 40, 100, 250, 558, 852, 1062, 1078, 1628, 1644, 1794, 2004, 2020, 2152, 2292, 2418, 2650, 2706, 2796, 2812, 3032, 3116, 3736, 3796, 3896, 3956, 3972, 4026, 4450, 4466, 4794, 5054, 5094, 5150, 5525, 5661, 5697, 5925, 6201, 6225, 6325, 6550, 6566, 6606, 6756, 6856, 6956, 7016, 7076, 8030, 8214
Offset: 1
Keywords
Examples
a(3) = 100 because a(2) = 40 and 100 = 2^2 * 5^2, 100 - 40 = 60 = 2^2 * 3 * 5 and 100 + 40 = 140 = 2^2 * 4 * 7 are all in A014613.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA014613:= proc(n) option remember; numtheory:-bigomega(n) = 4 end proc: R:= 16: a:= 16: count:= 1: while count < 100 do for x from a+16 do if isA014613(x-a) and isA014613(x) and isA014613(x+a) then break fi od; R:= R,x; a:= x; count:= count+1; od: R;
-
Mathematica
s = {m = 16}; Do[p = m + 16; While[{4, 4, 4} != PrimeOmega[{p, m + p, p - m}], p++]; AppendTo[s, m = p], {50}]; s
Comments