A368110 Numbers of which it is possible to choose a different divisor of each prime index.
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 3: {2} 5: {3} 6: {1,2} 7: {4} 9: {2,2} 10: {1,3} 11: {5} 13: {6} 14: {1,4} 15: {2,3} 17: {7} 19: {8} 21: {2,4} 22: {1,5} 23: {9} 25: {3,3} 26: {1,6} 29: {10} 30: {1,2,3}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(n) uses numtheory, GraphTheory; local B,S,F,D,E,G,t,d; F:= ifactors(n)[2]; F:= map(t -> [pi(t[1]),t[2]], F); D:= `union`(seq(divisors(t[1]), t = F)); F:= map(proc(t) local i;seq([t[1],i],i=1..t[2]) end proc,F); if nops(D) < nops(F) then return false fi; E:= {seq(seq({t,d},d=divisors(t[1])),t = F)}; S:= map(t -> convert(t,name), [op(F),op(D)]); E:= map(e -> map(convert,e,name),E); G:= Graph(S,E); B:= BipartiteMatching(G); B[1] = nops(F); end proc: select(filter, [$1..100]); # Robert Israel, Feb 15 2024
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]!={}&]
Formula
Heinz numbers of the partitions counted by A239312.
Comments