A368116 A(m, n) = lcm_{p in Partitions(n)} (Product_{r in p}(r + m)). Array read by ascending antidiagonals, for m, n >= 0.
1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 4, 36, 24, 12, 1, 5, 80, 540, 720, 60, 1, 6, 150, 960, 6480, 1440, 360, 1, 7, 252, 5250, 134400, 136080, 60480, 2520, 1, 8, 392, 1512, 315000, 537600, 8164800, 120960, 5040, 1, 9, 576, 24696, 63504, 1575000, 32256000, 24494400, 3628800, 15120
Offset: 0
Examples
Array A(m, n) begins: [0] 1, 1, 2, 6, 12, 60, 360, ... A048803 [1] 1, 2, 12, 24, 720, 1440, 60480, ... A091137 [2] 1, 3, 36, 540, 6480, 136080, 8164800, ... A368048 [3] 1, 4, 80, 960, 134400, 537600, 32256000, ... [4] 1, 5, 150, 5250, 315000, 1575000, 330750000, ... [5] 1, 6, 252, 1512, 63504, 1905120, 880165440, ... [6] 1, 7, 392, 24696, 6914880, 532445760, 268352663040, ... [7] 1, 8, 576, 23040, 18247680, 145981440, 683193139200, ... [8] 1, 9, 810, 80190, 7217100, 844400700, 5851696851000, ... . Let m = 2 and n = 4. The partitions of 4 are [(4), (3,1), (2,2), (2,1,1), (1, 1, 1, 1)]. Thus A(2, 4) = lcm([6, 5*3, 4*4, 4*3*3, 3*3*3*3]) = 6480.
Programs
-
SageMath
def A(m, n): return lcm(product(r + m for r in p) for p in Partitions(n)) for m in range(9): print([A(m, n) for n in range(7)])
Comments