cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368128 a(n) is the y-coordinate of the n-th point in a square spiral mapped to a square grid rotated by Pi/4 using the symmetrized variant of the distance-limited strip bijection described in A368126.

Original entry on oeis.org

0, 1, 1, 1, 0, -1, -1, -1, 0, 0, 1, 2, 3, 2, 2, 1, 0, 0, -1, -2, -3, -2, -2, -1, 0, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1, 0, -1, -2, -2, -3, -3, -4, -3, -3, -2, -2, -1, 0, 1, 1, 2, 3, 4, 4, 5, 6, 5, 4, 4, 3, 2, 1, 0, 0, -1, -1, -2, -3, -4, -4, -5, -6, -5, -4, -4, -3, -2, -1, 0, 0, 1, 2, 2, 3, 4
Offset: 0

Views

Author

Hugo Pfoertner, Jan 07 2024

Keywords

Crossrefs

A368127 gives the corresponding x-coordinates.

Programs

  • PARI
    \\ Identical to a368127(n), but with
    a368128(n) = BijectionD([ax(n), ay(n)], Bijectionk)[2];

A368122 a(n) is the x-coordinate of the n-th point in a square spiral mapped to a square grid rotated by Pi/4 using the symmetrized variant of the distance-limited strip bijection described in A368121.

Original entry on oeis.org

0, 1, 0, -1, -1, -1, 0, 1, 1, 2, 2, 1, 0, 0, -1, -2, -3, -2, -2, -1, 0, 0, 1, 2, 3, 3, 3, 2, 2, 1, 0, -1, -2, -2, -3, -3, -4, -3, -3, -2, -2, -1, 0, 1, 2, 2, 3, 3, 4, 5, 4, 4, 3, 2, 1, 1, 0, 0, -1, -2, -3, -4, -4, -5, -6, -5, -4, -4, -3, -2, -1, -1, 0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 5, 5, 5, 4
Offset: 0

Views

Author

Hugo Pfoertner, Jan 06 2024

Keywords

Crossrefs

A368123 gives the corresponding y-coordinates.
Analogous pair of sequences, but without symmetrization: A367895, A367896.

Programs

  • PARI
    \\ ax(n), ay(n) after Kevin Ryde's functions in A174344 and A274923.
    \\ It is assumed that the PARI programs from A367150 and A368121 have been loaded and the functions defined there are available.
    ax(n) = {my (m=sqrtint(n), k=ceil(m/2)); n -= 4*k^2; if (n<0, if (n<-m, k, -k-n), if (n
    				
Showing 1-2 of 2 results.