cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368135 Triangle read by rows: T(n,k) is the k-th Lie-Betti number of the Fibonacci trees of order n >= 2.

Original entry on oeis.org

1, 2, 2, 1, 1, 4, 11, 16, 16, 11, 4, 1, 1, 7, 33, 95, 212, 344, 444, 444, 344, 212, 95, 33, 7, 1, 1, 12, 90, 454, 1780, 5489, 14036, 29804, 54007, 83404, 111361, 128378, 128378, 111361, 83404, 54007, 29804, 14036, 5489, 1780, 454, 90, 12, 1
Offset: 2

Views

Author

Samuel J. Bevins, Jan 11 2024

Keywords

Examples

			Triangle begins:
  k=0 1  2  3   4   5    6    7    8    9    10    11   12    13   14   15
n=2: 1 2   2  1
n=3: 1 4  11  16   16   11     4     1
n=4: 1 7  33  95  212  344   444   444   344   212     95     33      7      1
n=5: 1 12 90 454 1780 5489 14036 29804 54007 83404 111361 128378 128378 111361 83404 54007 ...
		

Crossrefs

Cf. A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360938 (ladder graph), A360937 (wheel graph).

Programs

  • SageMath
    from sage.algebras.lie_algebras.lie_algebra import LieAlgebra, LieAlgebras
    def BettiNumbers(graph):
        D = {}
        for edge in graph.edges():
            e = "x" + str(edge[0])
            f = "x" + str(edge[1])
            D[(e, f)] = {e + f : 1}
        C = (LieAlgebras(QQ).WithBasis().Graded().FiniteDimensional().
             Stratified().Nilpotent())
        L = LieAlgebra(QQ, D, nilpotent=True, category=C)
        H = L.cohomology()
        d = L.dimension() + 1
        return [H[n].dimension() for n in range(d)]
    # Example usage:
    n = 5
    X = BettiNumbers(graphs.FibonacciTree(n))