cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368173 Expansion of e.g.f. -log(1 - x^2/2 * (exp(x) - 1)).

Original entry on oeis.org

0, 0, 0, 3, 6, 10, 105, 651, 2968, 26496, 265905, 2203795, 22830456, 288661308, 3476579197, 44960585775, 671394654960, 10329701480416, 164573071219233, 2865785889662019, 52647629639499280, 1000194250108913580, 20125846165307543661, 426789766980101676943
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=1, n\3, (k-1)!*stirling(n-2*k, k, 2)/(2^k*(n-2*k)!));

Formula

a(n) = n! * Sum_{k=1..floor(n/3)} (k-1)! * Stirling2(n-2*k,k)/(2^k * (n-2*k)!).
a(0) = a(1) = a(2) = 0; a(n) = n*(n-1)/2 + Sum_{k=3..n-1} k*(k-1)/2 * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Jan 22 2025

A366751 Expansion of e.g.f. -log(1 - x^3 * (exp(x) - 1)).

Original entry on oeis.org

0, 0, 0, 0, 24, 60, 120, 210, 20496, 181944, 1059120, 4990590, 180292200, 3191349876, 36598884504, 327837512730, 7732754793120, 194896185648240, 3574721299186656, 51311061420097014, 1105883184455171640, 32127696556638165420, 812811279492629700360
Offset: 0

Views

Author

Seiichi Manyama, Dec 15 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=1, n\4, (k-1)!*stirling(n-3*k, k, 2)/(n-3*k)!);

Formula

a(n) = n! * Sum_{k=1..floor(n/4)} (k-1)! * Stirling2(n-3*k,k)/(n-3*k)!.
Showing 1-2 of 2 results.